scispace - formally typeset
Search or ask a question
Author

Bruno Rudolf

Bio: Bruno Rudolf is an academic researcher from Deutscher Wetterdienst. The author has contributed to research in topics: Precipitation & Rain gauge. The author has an hindex of 7, co-authored 9 publications receiving 6587 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A new digital Koppen-Geiger world map on climate classification, valid for the second half of the 20 th century, based on recent data sets from the Climatic Research Unit of the University of East Anglia and the Global Precipitation Climatology Centre at the German Weather Service.
Abstract: The most frequently used climate classification map is that o f Wladimir Koppen, presented in its latest version 1961 by Rudolf Geiger. A huge number of climate studies and subsequent publications adopted this or a former release of the Koppen-Geiger map. While the climate classification concept has been widely applied to a broad range of topics in climate and climate change research as well as in physical geography, hydrology, agriculture, biology and educational aspects, a well-documented update of the world climate classification map is still missing. Based on recent data sets from the Climatic Research Unit (CRU) of the University of East Anglia and the Global Precipitation Climatology Centre (GPCC) at the German Weather Service, we present here a new digital Koppen-Geiger world map on climate classification, valid for the second half of the 20 th century. Zusammenfassung Die am haufigsten verwendete Klimaklassifikationskarte ist jene von Wladimir Koppen, die in der letzten Auflage von Rudolf Geiger aus dem Jahr 1961 vorliegt. Seither bildeten viele Klimabucher und Fachartikel diese oder eine fruhere Ausgabe der Koppen-Geiger Karte ab. Obwohl das Schema der Klimaklassifikation in vielen Forschungsgebieten wie Klima und Klimaanderung aber auch physikalische Geographie, Hydrologie, Landwirtschaftsforschung, Biologie und Ausbildung zum Einsatz kommt, fehlt bis heute eine gut dokumentierte Aktualisierung der Koppen-Geiger Klimakarte. Basierend auf neuesten Datensatzen des Climatic Research Unit (CRU) der Universitat von East Anglia und des Weltzentrums fur Niederschlagsklimatologie (WZN) am Deutschen Wetterdienst prasentieren wir hier eine neue digitale Koppen-Geiger Weltkarte fur die zweite Halfte des 20. Jahrhunderts.

7,820 citations

01 Jan 2004
TL;DR: The use of globally gridded climate data for analyses of long-term climate variability has to be ensured that station-data used for gridding are as continous and homogeneous as possible as mentioned in this paper.
Abstract: Globally gridded precipitation-data sets are an essential base for various applications in the geosciences and especially in climate research, as for instance global and regional studies on the hydrological cycle and on climate variability, verification and calibration of satellite based climate data or the evaluation of global circulation models (GCM’s). As all these applications require reliable high quality precipitation fields the underlying station data have to meet high demands concerning the quality of the observed precipitation data as well as the correctness of station meta data and also with respect to sufficient spatial station density and distribution. Concerning the use of globally gridded climate data for analyses of long-term climate variability it has to be ensured that station-data used for gridding are as continous and homogeneous as possible.

271 citations

Journal ArticleDOI
TL;DR: In this paper, a method for event-based daily bias-correction of synoptic precipitation observations regarding systematic measuring errors was transfered at the Global Precipitation Climatology Centre (GPCC) from regional to global applications.
Abstract: A recently developed method for event-based daily bias-correction of synoptic precipitation observations regarding systematic measuring errors was transfered at the Global Precipitation Climatology Centre (GPCC) from regional to global applications. Using the reported present weather, an analysis based on more than 600 000 global synoptic data from 16 winter months was done, which made it possible to relate air temperature and dew point temperature to the probable distribution of liquid, solid and mixed precipitation phase. Based on this information, synoptic precipitation observations can be corrected regarding systematic measuring errors on a daily resolution, which makes the estimation of extreme precipitation events more reliable.

74 citations

Journal ArticleDOI
TL;DR: In this paper, a statistical correction model for daily measurements was developed in the framework of BALTEX and adapted for the Global Precipitation Climatology Centre (GPCC) to correct global daily rain gauge data routinely transmitted via GTS.
Abstract: Up to the present global precipitation climatologies based on rain gauges have been corrected for systematic measurement errors using monthly correction factors only We present results from a statistical correction model for daily measurements It was developed in the framework of BALTEX and adapted for the Global Precipitation Climatology Centre (GPCC) to correct global daily rain gauge data routinely transmitted via GTS We focus on regions of the GEWEX continental scale experiments BALTEX (Europe), GAME (Asia), LBA (South-America) and GCIP (North- America) The correction model was applied to 2 years of data (1996, 1997) and compared with the correction factors of the widely used precipitation climatology of Legates (1987) In the BALTEX region our averaged daily correction factor is about equal to the monthly correction given by Legates during the summer months, while Legates estimated higher corrections for snow (up to 50 %) In the regions of GAME and LBA the corrections given by Legates are also generally higher (50 – 100 %) than our corrections This is opposite to the corrections calculated for GCIP rain gauges, which are not significantly different

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a new global map of climate using the Koppen-Geiger system based on a large global data set of long-term monthly precipitation and temperature station time series is presented.
Abstract: Although now over 100 years old, the classification of climate originally formulated by Wladimir Koppen and modified by his collaborators and successors, is still in widespread use. It is widely used in teaching school and undergraduate courses on climate. It is also still in regular use by researchers across a range of disciplines as a basis for climatic regionalisation of variables and for assessing the output of global climate models. Here we have produced a new global map of climate using the Koppen-Geiger system based on a large global data set of long-term monthly precipitation and temperature station time series. Climatic variables used in the Koppen-Geiger system were calculated at each station and interpolated between stations using a two-dimensional (latitude and longitude) thin-plate spline with tension onto a 0.1°×0.1° grid for each continent. We discuss some problems in dealing with sites that are not uniquely classified into one climate type by the Koppen-Geiger system and assess the outcomes on a continent by continent basis. Globally the most common climate type by land area is BWh (14.2%, Hot desert) followed by Aw (11.5%, Tropical savannah). The updated world Koppen-Geiger climate map is freely available electronically in the Supplementary Material Section.

10,518 citations

Journal ArticleDOI
TL;DR: A new digital Koppen-Geiger world map on climate classification, valid for the second half of the 20 th century, based on recent data sets from the Climatic Research Unit of the University of East Anglia and the Global Precipitation Climatology Centre at the German Weather Service.
Abstract: The most frequently used climate classification map is that o f Wladimir Koppen, presented in its latest version 1961 by Rudolf Geiger. A huge number of climate studies and subsequent publications adopted this or a former release of the Koppen-Geiger map. While the climate classification concept has been widely applied to a broad range of topics in climate and climate change research as well as in physical geography, hydrology, agriculture, biology and educational aspects, a well-documented update of the world climate classification map is still missing. Based on recent data sets from the Climatic Research Unit (CRU) of the University of East Anglia and the Global Precipitation Climatology Centre (GPCC) at the German Weather Service, we present here a new digital Koppen-Geiger world map on climate classification, valid for the second half of the 20 th century. Zusammenfassung Die am haufigsten verwendete Klimaklassifikationskarte ist jene von Wladimir Koppen, die in der letzten Auflage von Rudolf Geiger aus dem Jahr 1961 vorliegt. Seither bildeten viele Klimabucher und Fachartikel diese oder eine fruhere Ausgabe der Koppen-Geiger Karte ab. Obwohl das Schema der Klimaklassifikation in vielen Forschungsgebieten wie Klima und Klimaanderung aber auch physikalische Geographie, Hydrologie, Landwirtschaftsforschung, Biologie und Ausbildung zum Einsatz kommt, fehlt bis heute eine gut dokumentierte Aktualisierung der Koppen-Geiger Klimakarte. Basierend auf neuesten Datensatzen des Climatic Research Unit (CRU) der Universitat von East Anglia und des Weltzentrums fur Niederschlagsklimatologie (WZN) am Deutschen Wetterdienst prasentieren wir hier eine neue digitale Koppen-Geiger Weltkarte fur die zweite Halfte des 20. Jahrhunderts.

7,820 citations

Journal ArticleDOI
TL;DR: The Global Precipitation Climatology Project (GPCP) version 2 Monthly Precise Analysis as discussed by the authors is a merged analysis that incorporates precipitation estimates from low-orbit satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations.
Abstract: The Global Precipitation Climatology Project (GPCP) Version 2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5 degrees x 2.5 degrees latitude-longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The data set is extended back into the premicrowave era (before 1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the raingauge analysis. This monthly analysis is the foundation for the GPCP suite of products including those at finer temporal resolution, satellite estimate, and error estimates for each field. The 23-year GPCP climatology is characterized, along with time and space variations of precipitation.

4,951 citations

Book
01 Jun 2008
TL;DR: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources.
Abstract: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources – their availability, quality, use and management. It takes into account current and projected regional key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and water. Its objectives are:

3,108 citations

Journal ArticleDOI
TL;DR: New global maps of the Köppen-Geiger climate classification at an unprecedented 1-km resolution for the present-day and for projected future conditions under climate change are presented, providing valuable indications of the reliability of the classifications.
Abstract: We present new global maps of the Koppen-Geiger climate classification at an unprecedented 1-km resolution for the present-day (1980–2016) and for projected future conditions (2071–2100) under climate change. The present-day map is derived from an ensemble of four high-resolution, topographically-corrected climatic maps. The future map is derived from an ensemble of 32 climate model projections (scenario RCP8.5), by superimposing the projected climate change anomaly on the baseline high-resolution climatic maps. For both time periods we calculate confidence levels from the ensemble spread, providing valuable indications of the reliability of the classifications. The new maps exhibit a higher classification accuracy and substantially more detail than previous maps, particularly in regions with sharp spatial or elevation gradients. We anticipate the new maps will be useful for numerous applications, including species and vegetation distribution modeling. The new maps including the associated confidence maps are freely available via www.gloh2o.org/koppen . Machine-accessible metadata file describing the reported data (ISA-Tab format)

2,434 citations