scispace - formally typeset
Search or ask a question
Author

Bruno Scaillet

Bio: Bruno Scaillet is an academic researcher from University of Orléans. The author has contributed to research in topics: Magma & Volcano. The author has an hindex of 61, co-authored 187 publications receiving 10108 citations. Previous affiliations of Bruno Scaillet include Centre national de la recherche scientifique & Blaise Pascal University.
Topics: Magma, Volcano, Silicic, Phenocryst, Melt inclusions


Papers
More filters
Journal ArticleDOI
08 Mar 2001-Nature
TL;DR: It is shown that the melting of basalt under both H2O-added and low-temperature conditions can yield extremely alkali-rich silicic liquids, the alkali content of which increases with pressure, suggesting that mantle metasomatism by slab-derived melt is a more common process than previously thought.
Abstract: The low concentrations of niobium, tantalum and titanium observed in island-arc basalts are thought to result from modification of the sub-arc mantle by a metasomatic agent, deficient in these elements, that originates from within the subducted oceanic crust1. Whether this agent is an hydrous fluid2 or a silica-rich melt3 has been discussed using mainly a trace-element approach4 and related to variable thermal regimes of subduction zones5. Melting of basalt in the absence of fluid both requires high temperatures and yields melt compositions unlike those found in most modern or Mesozoic island arcs6,7. Thus, metasomatism by fluids has been thought to be the most common situation. Here, however, we show that the melting of basalt under both H2O-added and low-temperature conditions can yield extremely alkali-rich silicic liquids, the alkali content of which increases with pressure. These liquids are deficient in titanium and in the elements niobium and tantalum and are virtually identical to glasses preserved in mantle xenoliths found in subduction zones6 and to veins found in exhumed metamorphic terranes of fossil convergent zones7. We also found that the interaction between such liquids and mantle olivine produces modal mineralogies that are identical to those observed in metasomatized Alpine-type peridotites8. We therefore suggest that mantle metasomatism by slab-derived melt is a more common process than previously thought.

442 citations

Journal ArticleDOI
TL;DR: In this paper, compositional zoning of hornblende is performed on a representative consistent either with an early crystallization event at ~400 MPa sample of the crystal-rich dacite ejected during the 15 June 1991 and 840-900°C, or with mixing events before eruption.
Abstract: contents of the plagioclase. Compositional zoning of hornblende is Crystallization experiments were carried out on a representative consistent either with an early crystallization event at ~400 MPa sample of the crystal-rich dacite ejected during the 15 June 1991 and 840–900°C, or with mixing events before eruption. The eruption of Mt Pinatubo, to define the pre-eruption conditions of experiments show that addition of S leads to an increase in the this major volcanic event. Experiments were performed in the mg-number of hornblende in the redox range where pyrrhotite occurs temperature and pressure range of 750–900°C and 220–390 (Ζ NNO+ 1·4) The lack of Mg-rich overgrowth on hornblende MPa, respectively. Redox conditions were varied between those of shows that if sulfur was introduced into the magma in the course the NNO (nickel–nickel oxide) buffer and 2·7 log fO2 units above of its crystallization, such as by volatile infiltration from an (NNO + 2·7). Melt water contents ranged from 3 to 7 wt % underlying, triggering basalt magma, then it must have occurred (H2O saturation). Phase equilibria at 220 MPa reproduce the when the dacite was already oxidized. phase assemblage of the magma only at temperatures below 780°C and water-rich conditions: melt H2O content > 6 wt %, or XH2Ofluid > 0·80. Phase abundances and the compositions of hornblende, plagioclase, and melt indicate that the eruption tapped a magma body that was at a temperature of 760 ± 20°C and

403 citations

Journal ArticleDOI
02 Feb 2012-Nature
TL;DR: A study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the ‘Minoan’ caldera-forming eruption of Santorini volcano, Greece, which occurred in the late 1600s bc, to provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption.
Abstract: Caldera-forming volcanic eruptions are low-frequency, highimpact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales1. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained2,3. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-formingeruption of Santorini volcano,Greece4, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption5,6. Despite the large volume of erupted magma4 (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicicmagmabatches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.

304 citations

Journal ArticleDOI
28 Nov 2008-Science
TL;DR: It is shown that the conductivity of the oceanic asthenosphere can be explained by 0.1 volume percent of carbonatite melts on average, which agrees with the carbon dioxide content of mid-ocean ridge basalts.
Abstract: Electrically conductive regions in Earth's mantle have been interpreted to reflect the presence of either silicate melt or water dissolved in olivine. On the basis of laboratory measurements, we show that molten carbonates have electrical conductivities that are three orders of magnitude higher than those of molten silicate and five orders of magnitude higher than those of hydrated olivine. High conductivities in the asthenosphere probably indicate the presence of small amounts of carbonate melt in peridotite and can therefore be interpreted in terms of carbon concentration in the upper mantle. We show that the conductivity of the oceanic asthenosphere can be explained by 0.1 volume percent of carbonatite melts on average, which agrees with the carbon dioxide content of mid-ocean ridge basalts.

286 citations


Cited by
More filters
Proceedings Article
01 Jan 1994
TL;DR: The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images.
Abstract: MUCKE aims to mine a large volume of images, to structure them conceptually and to use this conceptual structuring in order to improve large-scale image retrieval. The last decade witnessed important progress concerning low-level image representations. However, there are a number problems which need to be solved in order to unleash the full potential of image mining in applications. The central problem with low-level representations is the mismatch between them and the human interpretation of image content. This problem can be instantiated, for instance, by the incapability of existing descriptors to capture spatial relationships between the concepts represented or by their incapability to convey an explanation of why two images are similar in a content-based image retrieval framework. We start by assessing existing local descriptors for image classification and by proposing to use co-occurrence matrices to better capture spatial relationships in images. The main focus in MUCKE is on cleaning large scale Web image corpora and on proposing image representations which are closer to the human interpretation of images. Consequently, we introduce methods which tackle these two problems and compare results to state of the art methods. Note: some aspects of this deliverable are withheld at this time as they are pending review. Please contact the authors for a preview.

2,134 citations

Journal ArticleDOI
01 Jan 2005-Lithos
TL;DR: In this article, an analysis of an extensive adakite geochemical database identifies two distinct compositional groups: high-SiO2 adakites (HSA) which represent subducted basaltic slab-melts that have reacted with peridotite during ascent through mantle wedge and low-Si O 2 adakitic mantle wedge.

2,125 citations

Journal ArticleDOI
20 Feb 2014-Nature
TL;DR: The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth’s history.
Abstract: The rapid increase of carbon dioxide concentration in Earth’s modern atmosphere is a matter of major concern. But for the atmosphere of roughly two-and-half billion years ago, interest centres on a different gas: free oxygen (O2) spawned by early biological production. The initial increase of O2 in the atmosphere, its delayed build-up in the ocean, its increase to near-modern levels in the sea and air two billion years later, and its cause-and-effect relationship with life are among the most compelling stories in Earth’s history.

1,821 citations

Journal ArticleDOI
TL;DR: A review of existing geothermometers and geobarometers, and a presentation of approximately 30 new models, including a new plagioclase-liquid hygrometer, can be found in this paper.
Abstract: Knowledge of temperature and pressure, however qualitative, has been central to our views of geology since at least the early 19th century. In 1822, for example, Charles Daubeny presented what may be the very first “Geological Thermometer,” comparing temperatures of various geologic processes (Torrens 2006). Daubeny (1835) may even have been the first to measure the temperature of a lava flow, by laying a thermometer on the top of a flow at Vesuvius—albeit several months following the eruption, after intervening rain (his estimate was 390°F). In any case, pressure ( P ) and temperature ( T ) estimation lie at the heart of fundamental questions: How hot is Earth, and at what rate has the planet cooled. Are volcanoes the products of thermally driven mantle plumes? Where are magmas stored, and how are they transported to the surface—and how do storage and transport relate to plate tectonics? Well-calibrated thermometers and barometers are essential tools if we are to fully appreciate the driving forces and inner workings of volcanic systems. This chapter presents methods to estimate the P-T conditions of volcanic and other igneous processes. The coverage includes a review of existing geothermometers and geobarometers, and a presentation of approximately 30 new models, including a new plagioclase-liquid hygrometer. Our emphasis is on experimentally calibrated “thermobarometers,” based on analytic expressions using P or T as dependent variables. For numerical reasons (touched on below) such expressions will always provide the most accurate means of P-T estimation, and are also most easily employed. Analytical expressions also allow error to be ascertained; in the absence of estimates of error, P-T estimates are nearly meaningless. This chapter is intended to complement the chapters by Anderson et al. (2008), who cover granitic systems, and by Blundy and Cashman (2008) and Hansteen and Klugel (2008), who consider additional methods …

1,785 citations

Journal ArticleDOI
TL;DR: In this article, a model for the generation of intermediate and silicic igneous rocks is presented, based on experimental data and numerical modeling, which is directed at subduction-related magmatism, but has general applicability to magmas generated in other plate tectonic settings, including continental rift zones.
Abstract: A model for the generation of intermediate and silicic igneous rocks is presented, based on experimental data and numerical modelling. The model is directed at subduction-related magmatism, but has general applicability to magmas generated in other plate tectonic settings, including continental rift zones. In the model mantlederived hydrous basalts emplaced as a succession of sills into the lower crust generate a deep crustal hot zone. Numerical modelling of the hot zone shows that melts are generated from two distinct sources; partial crystallization of basalt sills to produce residual H2O-rich melts; and partial melting of pre-existing crustal rocks. Incubation times between the injection of the first sill and generation of residual melts from basalt crystallization are controlled by the initial geotherm, the magma input rate and the emplacement depth. After this incubation period, the melt fraction and composition of residual melts are controlled by the temperature of the crust into which the basalt is intruded. Heat and H2O transfer from the crystallizing basalt promote partial melting of the surrounding crust, which can include meta-sedimentary and meta-igneous basement rocks and earlier basalt intrusions. Mixing of residual and crustal partial melts leads to diversity in isotope and trace element chemistry. Hot zone melts are H2O-rich. Consequently, they have low viscosity and density, and can readily detach from their source and ascend rapidly. In the case of adiabatic ascent the magma attains a super-liquidus state, because of the relative slopes of the adiabat and the liquidus. This leads to resorption of any entrained crystals or country rock xenoliths. Crystallization begins only when the ascending magma intersects its H2O-saturated liquidus at shallow depths. Decompression and degassing are the driving forces behind crystallization, which takes place at shallow depth on timescales of decades or less. Degassing and crystallization at shallow depth lead to large increases in viscosity and stalling of the magma to form volcano-feeding magma chambers and shallow plutons. It is proposed that chemical diversity in arc magmas is largely acquired in the lower crust, whereas textural diversity is related to shallow-level crystallization.

1,547 citations