scispace - formally typeset
Search or ask a question
Author

Bryan Joseph San Luis

Bio: Bryan Joseph San Luis is an academic researcher from University of Toronto. The author has contributed to research in topics: Gene & Genetic Fitness. The author has an hindex of 7, co-authored 8 publications receiving 3714 citations.

Papers
More filters
Journal ArticleDOI
22 Jan 2010-Science
TL;DR: A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function.
Abstract: A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.

2,225 citations

Journal ArticleDOI
23 Sep 2016-Science
TL;DR: A global genetic interaction network highlights the functional organization of a cell and provides a resource for predicting gene and pathway function and how coherent sets of negative or positive genetic interactions connect protein complex and pathways to map a functional wiring diagram of the cell.
Abstract: INTRODUCTION Genetic interactions occur when mutations in two or more genes combine to generate an unexpected phenotype. An extreme negative or synthetic lethal genetic interaction occurs when two mutations, neither lethal individually, combine to cause cell death. Conversely, positive genetic interactions occur when two mutations produce a phenotype that is less severe than expected. Genetic interactions identify functional relationships between genes and can be harnessed for biological discovery and therapeutic target identification. They may also explain a considerable component of the undiscovered genetics associated with human diseases. Here, we describe construction and analysis of a comprehensive genetic interaction network for a eukaryotic cell. RATIONALE Genome sequencing projects are providing an unprecedented view of genetic variation. However, our ability to interpret genetic information to predict inherited phenotypes remains limited, in large part due to the extensive buffering of genomes, making most individual eukaryotic genes dispensable for life. To explore the extent to which genetic interactions reveal cellular function and contribute to complex phenotypes, and to discover the general principles of genetic networks, we used automated yeast genetics to construct a global genetic interaction network. RESULTS We tested most of the ~6000 genes in the yeast Saccharomyces cerevisiae for all possible pairwise genetic interactions, identifying nearly 1 million interactions, including ~550,000 negative and ~350,000 positive interactions, spanning ~90% of all yeast genes. Essential genes were network hubs, displaying five times as many interactions as nonessential genes. The set of genetic interactions or the genetic interaction profile for a gene provides a quantitative measure of function, and a global network based on genetic interaction profile similarity revealed a hierarchy of modules reflecting the functional architecture of a cell. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections associated with defects in cell cycle progression or cellular proteostasis. Importantly, the global network illustrates how coherent sets of negative or positive genetic interactions connect protein complex and pathways to map a functional wiring diagram of the cell. CONCLUSION A global genetic interaction network highlights the functional organization of a cell and provides a resource for predicting gene and pathway function. This network emphasizes the prevalence of genetic interactions and their potential to compound phenotypes associated with single mutations. Negative genetic interactions tend to connect functionally related genes and thus may be predicted using alternative functional information. Although less functionally informative, positive interactions may provide insights into general mechanisms of genetic suppression or resiliency. We anticipate that the ordered topology of the global genetic network, in which genetic interactions connect coherently within and between protein complexes and pathways, may be exploited to decipher genotype-to-phenotype relationships.

1,037 citations

Journal ArticleDOI
TL;DR: This work has applied the SGA score to examine the relationship between physical and genetic interaction networks, and found that positive genetic interactions connect across functionally distinct protein complexes revealing a network of genetic suppression among loss-of-function alleles.
Abstract: Global quantitative analysis of genetic interactions is a powerful approach for deciphering the roles of genes and mapping functional relationships among pathways. Using colony size as a proxy for fitness, we developed a method for measuring fitness-based genetic interactions from high-density arrays of yeast double mutants generated by synthetic genetic array (SGA) analysis. We identified several experimental sources of systematic variation and developed normalization strategies to obtain accurate single- and double-mutant fitness measurements, which rival the accuracy of other high-resolution studies. We applied the SGA score to examine the relationship between physical and genetic interaction networks, and we found that positive genetic interactions connect across functionally distinct protein complexes revealing a network of genetic suppression among loss-of-function alleles.

362 citations

Journal ArticleDOI
20 Apr 2018-Science
TL;DR: The extensive network of trigenic interactions and their ability to generate functionally diverse phenotypes suggest that higher-order genetic interactions may play a key role in the genotype-to-phenotype relationship, genome size, and speciation.
Abstract: INTRODUCTION Genetic interactions occur when mutations in different genes combine to result in a phenotype that is different from expectation based on those of the individual mutations. Negative genetic interactions occur when a combination of mutations leads to a fitness defect that is more exacerbated than expected. For example, synthetic lethality occurs when two mutations, neither of which is lethal on its own, generate an inviable double mutant. Alternatively, positive genetic interactions occur when genetic perturbations combine to generate a double mutant with a greater fitness than expected. Global digenic interaction studies have been useful for understanding the functional wiring diagram of the cell and may also provide insight into the genotype-to-phenotype relationship, which is important for tracking the missing heritability of human health and disease. Here we describe a network of higher-order trigenic interactions and explore its implications. RATIONALE Variation in phenotypic outcomes in different individuals is caused by genetic determinants that act as modifiers. Modifier loci are prevalent in human populations, but knowledge regarding how variants interact to modulate phenotype in different individuals is lacking. Similarly, in yeast, traits including conditional essentiality—in which certain genes are essential in one genetic background but nonessential in another—often result from an interplay of multiple modifier loci. Because complex modifiers may underlie the genetic basis of physiological states found in natural populations, it is critical to understand the landscape of higher-order genetic interactions. RESULTS To survey trigenic interactions, we designed query strains that sampled key features of the global digenic interaction network: (i) digenic interaction strength, (ii) average number of digenic interactions, and (iii) digenic interaction profile similarity. In total, we tested ~400,000 double and ~200,000 triple mutants for fitness defects and identified ~9500 digenic and ~3200 trigenic negative interactions. Although trigenic interactions tend to be weaker than digenic interactions, they were both enriched for functional relationships. About one-third of trigenic interactions identified “novel” connections that were not observed in our digenic control network, whereas the remaining approximately two-thirds of trigenic interactions “modified” a digenic interaction, suggesting that the global digenic interaction network is important for understanding the trigenic interaction network. Despite their functional enrichment, trigenic interactions also bridged distant bioprocesses. We estimate that the global trigenic interaction network is ~100 times as large as the global digenic network, highlighting the potential for complex genetic interactions to affect the biology of inheritance. CONCLUSION The extensive network of trigenic interactions and their ability to generate functionally diverse phenotypes suggest that higher-order genetic interactions may play a key role in the genotype-to-phenotype relationship, genome size, and speciation.

209 citations

Journal ArticleDOI
TL;DR: Using computational predictions combined with traditional quantitative experiments, 100 proteins whose deficiency alters mitochondrial biogenesis and inheritance in Saccharomyces cerevisiae are identified and characterized mutants with subtle mitochondrial defects whose phenotypes were undetected by high-throughput methods.
Abstract: Mitochondria are central to many cellular processes including respiration, ion homeostasis, and apoptosis. Using computational predictions combined with traditional quantitative experiments, we have identified 100 proteins whose deficiency alters mitochondrial biogenesis and inheritance in Saccharomyces cerevisiae. In addition, we used computational predictions to perform targeted double-mutant analysis detecting another nine genes with synthetic defects in mitochondrial biogenesis. This represents an increase of about 25% over previously known participants. Nearly half of these newly characterized proteins are conserved in mammals, including several orthologs known to be involved in human disease. Mutations in many of these genes demonstrate statistically significant mitochondrial transmission phenotypes more subtle than could be detected by traditional genetic screens or high-throughput techniques, and 47 have not been previously localized to mitochondria. We further characterized a subset of these genes using growth profiling and dual immunofluorescence, which identified genes specifically required for aerobic respiration and an uncharacterized cytoplasmic protein required for normal mitochondrial motility. Our results demonstrate that by leveraging computational analysis to direct quantitative experimental assays, we have characterized mutants with subtle mitochondrial defects whose phenotypes were undetected by high-throughput methods.

153 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The latest version of STRING more than doubles the number of organisms it covers, and offers an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input.
Abstract: Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein-protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein-protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.

10,584 citations

Journal ArticleDOI
03 Jan 2014-Science
TL;DR: In this paper, a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library was described.
Abstract: The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II ( TOP2A ) poison etoposide identified TOP2A , as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.

2,487 citations

01 Dec 2013
TL;DR: A pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library is described and it is shown that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs.
Abstract: The bacterial CRISPR/Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, while another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Finally, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/ sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.

2,130 citations

Journal ArticleDOI
23 Oct 2014-Cell
TL;DR: This work identifies rules for specific targeting of transcriptional repressors (CRISPRi), typically achieving 90%-99% knockdown with minimal off-target effects, and activators to endogenous genes via endonuclease-deficient Cas9, which enable modulation of gene expression over a ∼1,000-fold range.

2,041 citations