scispace - formally typeset
Search or ask a question
Author

Buell T. Jannuzi

Bio: Buell T. Jannuzi is an academic researcher from University of Arizona. The author has contributed to research in topics: Galaxy & Redshift. The author has an hindex of 91, co-authored 387 publications receiving 31863 citations. Previous affiliations of Buell T. Jannuzi include Kitt Peak National Observatory & Institute for Advanced Study.


Papers
More filters
Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +403 moreInstitutions (82)
TL;DR: In this article, the Event Horizon Telescope was used to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87.
Abstract: When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 +/- 3 mu as, which is circular and encompasses a central depression in brightness with a flux ratio greater than or similar to 10: 1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M = (6.5 +/- 0.7) x 10(9) M-circle dot. Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.

2,589 citations

Journal ArticleDOI
TL;DR: In this article, the authors used spectro- photometrically monitored Palomar-Green quasars in order to obtain mea- surements of their emission lines and investigate the relationship between quasar luminosity, central black hole mass, and broad emission-line regions (BLRs) size in AGNs.
Abstract: Correlated variations in the line and continuum emission from active galactic nuclei (AGNs) can be used to determine the size and geometry of the broad emission-line regions (BLRs). We have spectro- photometrically monitored a well-de—ned sample of 28 Palomar-Green quasars in order to obtain mea- surements of their BLRs and to investigate the relationships between quasar luminosity, central black hole mass, and BLR size in AGNs. Spectrophotometry was obtained every 1¨4 months for 7.5 yr, yield- ing 20¨70 observing epochs per object. Both the continuum and emission-line —uxes of all of the quasars were observed to change during the duration of the observing program. Seventeen of the 28 objects were observed with adequate sampling independent observing epochs) to search for correlated variations (Z20 between the Balmer emission lines and the continuum —ux. For each of these 17 objects, a signi—cant correlation was observed, with the Balmer-line variations lagging those of the continuum by D100 days (rest frame). Our work increases the available luminosity range for studying the size-mass-luminosity relations in AGNs by 2 orders of magnitude and doubles the number of objects suitable for such studies. Combining our results with comparable published data available for Seyfert 1 galaxies, we —nd the BLR size scales with the rest-frame 5100 luminosity as L0.70B0.03. This determination of the scaling of the Ae size of the BLR as a function of luminosity is signi—cantly diUerent from those previously published and suggests that the eUective ionization parameter in AGNs may be a decreasing function of luminosity. We are also able to constrain, subject to our assumption that gravity dominates the motions of the BLR gas, the scaling relationship between the mass of the central black holes and the luminosity in AGNs. We —nd that the central mass scales with 5100 luminosity as M P L0.5B0.1. This is inconsistent with all Ae AGNs having optical luminosity that is a constant fraction of the Eddington luminosity. Subject headings: galaxies: activequasars: emission linesquasars: general

2,119 citations

Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +251 moreInstitutions (56)
TL;DR: In this article, the authors present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign, and find that >50% of the total flux at arcsecond scales comes from near the horizon and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole.
Abstract: We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated from GRMHD models directly to the data. We compare the derived emission region and black hole parameters from these analyses with those recovered from reconstructed images. There is a remarkable consistency among all methods and data sets. We find that >50% of the total flux at arcsecond scales comes from near the horizon, and that the emission is dramatically suppressed interior to this region by a factor >10, providing direct evidence of the predicted shadow of a black hole. Across all methods, we measure a crescent diameter of 42 ± 3 μas and constrain its fractional width to be <0.5. Associating the crescent feature with the emission surrounding the black hole shadow, we infer an angular gravitational radius of GM/Dc2 = 3.8 ± 0.4 μas. Folding in a distance measurement of ${16.8}_{-0.7}^{+0.8}\,\mathrm{Mpc}$ gives a black hole mass of $M=6.5\pm 0.2{| }_{\mathrm{stat}}\pm 0.7{| }_{\mathrm{sys}}\times {10}^{9}\hspace{2pt}{M}_{\odot }$. This measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole, as predicted by the general theory of relativity.

1,024 citations

Journal ArticleDOI
TL;DR: In this article, the Spitzer Space Telescope mid-infrared colors, derived from the IRAC Shallow Survey, of nearly 10,000 spectroscopically identified sources from the AGN and Galaxy Evolution Survey, were used to identify active galaxies.
Abstract: Mid-infrared photometry provides a robust technique for identifying active galaxies. While the ultraviolet to mid-infrared (λ 5 μm) continuum of stellar populations is dominated by the composite blackbody curve and peaks at approximately 1.6 μm, the ultraviolet to mid-infrared continuum of active galactic nuclei (AGNs) is dominated by a power law. Consequently, with a sufficient wavelength baseline, one can easily distinguish AGNs from stellar populations. Mirroring the tendency of AGNs to be bluer than galaxies in the ultraviolet, where galaxies (and stars) sample the blue, rising portion of stellar spectra, AGNs tend to be redder than galaxies in the mid-infrared, where galaxies sample the red, falling portion of the stellar spectra. We report on Spitzer Space Telescope mid-infrared colors, derived from the IRAC Shallow Survey, of nearly 10,000 spectroscopically identified sources from the AGN and Galaxy Evolution Survey. On the basis of this spectroscopic sample, we find that simple mid-infrared color criteria provide remarkably robust separation of active galaxies from normal galaxies and Galactic stars, with over 80% completeness and less than 20% contamination. Considering only broad-lined AGNs, these mid-infrared color criteria identify over 90% of spectroscopically identified quasars and Seyfert 1 galaxies. Applying these color criteria to the full imaging data set, we discuss the implied surface density of AGNs and find evidence for a large population of optically obscured active galaxies.

999 citations

Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +251 moreInstitutions (58)
TL;DR: In this article, the first Event Horizon Telescope (EHT) images of M87 were presented, using observations from April 2017 at 1.3 mm wavelength, showing a prominent ring with a diameter of ~40 μas, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole.
Abstract: We present the first Event Horizon Telescope (EHT) images of M87, using observations from April 2017 at 1.3 mm wavelength. These images show a prominent ring with a diameter of ~40 μas, consistent with the size and shape of the lensed photon orbit encircling the "shadow" of a supermassive black hole. The ring is persistent across four observing nights and shows enhanced brightness in the south. To assess the reliability of these results, we implemented a two-stage imaging procedure. In the first stage, four teams, each blind to the others' work, produced images of M87 using both an established method (CLEAN) and a newer technique (regularized maximum likelihood). This stage allowed us to avoid shared human bias and to assess common features among independent reconstructions. In the second stage, we reconstructed synthetic data from a large survey of imaging parameters and then compared the results with the corresponding ground truth images. This stage allowed us to select parameters objectively to use when reconstructing images of M87. Across all tests in both stages, the ring diameter and asymmetry remained stable, insensitive to the choice of imaging technique. We describe the EHT imaging procedures, the primary image features in M87, and the dependence of these features on imaging assumptions.

952 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, the authors used spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62.
Abstract: We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmo- logical parameters: the Hubble constant the mass density the cosmological constant (i.e., the (H 0 ), () M ), vacuum energy density, the deceleration parameter and the dynamical age of the universe ) " ), (q 0 ), ) M \ 1) methods. We estimate the dynamical age of the universe to be 14.2 ^ 1.7 Gyr including systematic uncer- tainties in the current Cepheid distance scale. We estimate the likely e†ect of several sources of system- atic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these e†ects appear to reconcile the data with and ) " \ 0 q 0 " 0.

16,674 citations

Journal ArticleDOI
TL;DR: SciPy as discussed by the authors is an open source scientific computing library for the Python programming language, which includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics.
Abstract: SciPy is an open source scientific computing library for the Python programming language. SciPy 1.0 was released in late 2017, about 16 years after the original version 0.1 release. SciPy has become a de facto standard for leveraging scientific algorithms in the Python programming language, with more than 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories, and millions of downloads per year. This includes usage of SciPy in almost half of all machine learning projects on GitHub, and usage by high profile projects including LIGO gravitational wave analysis and creation of the first-ever image of a black hole (M87). The library includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics. In this work, we provide an overview of the capabilities and development practices of the SciPy library and highlight some recent technical developments.

12,774 citations

01 Jan 1998
TL;DR: The spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 � z � 0.62 were presented in this paper.
Abstract: We present spectral and photometric observations of 10 type Ia supernovae (SNe Ia) in the redshift range 0.16 � z � 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-Z Supernova Search Team (Garnavich et al. 1998; Schmidt et al. 1998) and Riess et al. (1998a), this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmological parameters: the Hubble constant (H0), the mass density (M), the cosmological constant (i.e., the vacuum energy density, �), the deceleration parameter (q0), and the dynamical age of the Universe (t0). The distances of the high-redshift SNe Ia are, on average, 10% to 15% farther than expected in a low mass density (M = 0.2) Universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., � > 0) and a current acceleration of the expansion (i.e., q0 < 0). With no prior constraint on mass density other than M � 0, the spectroscopically confirmed SNe Ia are statistically consistent with q0 < 0 at the 2.8�

11,197 citations

Journal ArticleDOI
01 Dec 2010
TL;DR: The Wide-field Infrared Survey Explorer (WISE) is mapping the whole sky following its launch on 14 December 2009 and completed its first full coverage of the sky on July 17 as discussed by the authors.
Abstract: The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

7,182 citations