scispace - formally typeset
Search or ask a question
Author

Bui H. Manh

Bio: Bui H. Manh is an academic researcher from University of Oxford. The author has contributed to research in topics: Malaria & Plasmodium vivax. The author has an hindex of 4, co-authored 4 publications receiving 1900 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This 2007 global P. falciparum malaria endemicity map is the first of a series with which it will be possible to monitor and evaluate the progress of this intervention process, and shows significant opportunities for malaria control in Africa and for malaria elimination elsewhere.
Abstract: Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (Pf EIR) and the basic reproductive number (PfR). Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (Pf PR) surveys were used in a model-based geostatistical (MBG) prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link Pf PR to Pf EIR and PfR and these were fitted to field data. These models were combined with the Pf PR map to create new global predictions of Pf EIR and PfR. All output maps included measured uncertainty. An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median Pf EIR of less than one and a median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both Pf EIR and PfR was substantial in regions of intense transmission. The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The maps presented here contribute to a rational basis for control and elimination decisions and can serve as a baseline assessment as the global health community looks ahead to the next series of milestones targeted at 2015.

1,161 citations

Journal ArticleDOI
TL;DR: A contemporary evidence-based map of the global spatial extent of P. vivax malaria, together with estimates of the human population at risk (PAR) of any level of transmission in 2009, is provided to support future cartographic-based burden estimations.
Abstract: Background: A research priority for Plasmodium vivax malaria is to improve our understanding of the spatial distribution of risk and its relationship with the burden of P. vivax disease in human populations. The aim of the research outlined in this article is to provide a contemporary evidence-based map of the global spatial extent of P. vivax malaria, together with estimates of the human population at risk (PAR) of any level of transmission in 2009. Methodology: The most recent P. vivax case-reporting data that could be obtained for all malaria endemic countries were used to classify risk into three classes: malaria free, unstable (,0.1 case per 1,000 people per annum (p.a.)) and stable ($0.1 case per 1,000 p.a.) P. vivax malaria transmission. Risk areas were further constrained using temperature and aridity data based upon their relationship with parasite and vector bionomics. Medical intelligence was used to refine the spatial extent of risk in specific areas where transmission was reported to be absent (e.g., large urban areas and malaria-free islands). The PAR under each level of transmission was then derived by combining the categorical risk map with a high resolution population surface adjusted to 2009. The exclusion of large Duffy negative populations in Africa from the PAR totals was achieved using independent modelling of the gene frequency of this genetic trait. It was estimated that 2.85 billion people were exposed to some risk of P. vivax transmission in 2009, with 57.1% of them living in areas of unstable transmission. The vast majority (2.59 billion, 91.0%) were located in Central and South East (CSE) Asia, whilst the remainder were located in America (0.16 billion, 5.5%) and in the Africa+ region (0.10 billion, 3.5%). Despite evidence of ubiquitous risk of P. vivax infection in Africa, the very high prevalence of Duffy negativity throughout Central and West Africa reduced the PAR estimates substantially. Conclusions: After more than a century of development and control, P. vivax remains more widely distributed than P. falciparum and is a potential cause of morbidity and mortality amongst the 2.85 billion people living at risk of infection, the majority of whom are in the tropical belt of CSE Asia. The probability of infection is reduced massively across Africa by the frequency of the Duffy negative trait, but transmission does occur on the continent and is a concern for Duffy positive locals and travellers. The final map provides the spatial limits on which the endemicity of P. vivax transmission can be mapped to support future cartographic-based burden estimations.

471 citations

Journal ArticleDOI
TL;DR: Reference 56 [Hay SI, Sinka ME, Tatem AJ, Patil AP, Guerra CA, et al. (2009) developing global maps of the dominant Anopheles vectors of human malaria was erroneously listed as "In press."
Abstract: Reference 56 [Hay SI, Sinka ME, Tatem AJ, Patil AP, Guerra CA, et al. (2009) Developing global maps of the dominant Anopheles vectors of human malaria. PLoS Med. In press.] was erroneously listed as "In press." It was in preparation at the time but was not published.

272 citations

Journal ArticleDOI
TL;DR: Poverty and forest cover were significantly associated with an increased count of malaria cases but the magnitude and direction of associations between climate and malaria varied by socio-ecological zone.

71 citations


Cited by
More filters
Journal ArticleDOI
25 Apr 2013-Nature
TL;DR: These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.
Abstract: Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes. For some patients, dengue is a life-threatening illness. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread. The contemporary worldwide distribution of the risk of dengue virus infection and its public health burden are poorly known. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanization. Using cartographic approaches, we estimate there to be 390 million (95% credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of disease severity). This infection total is more than three times the dengue burden estimate of the World Health Organization. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation.

7,238 citations

Journal ArticleDOI
08 Oct 2015-Nature
TL;DR: It is found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015, and interventions have averted 663 (542–753 credible interval) million clinical cases since 2000.
Abstract: Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015, and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542-753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies.

2,135 citations

Journal ArticleDOI
TL;DR: The findings show that the malaria mortality burden is larger than previously estimated, especially in adults, and there has been a rapid decrease in malaria mortality in Africa because of the scaling up of control activities supported by international donors.

1,440 citations

Journal ArticleDOI
30 Jan 2014-Blood
TL;DR: Iron-deficiency anemia was the top cause globally, although 10 different conditions were among the top 3 in regional rankings, and Malaria, schistosomiasis, and chronic kidney disease-related anemia were the only conditions to increase in prevalence.

1,427 citations

Journal ArticleDOI
TL;DR: Children's and women's haemoglobin statuses improved in some regions where concentrations had been low in the 1990s, leading to a modest global increase in mean haemochemistry and a reduction in anaemia prevalence between 1995 and 2011.

1,335 citations