scispace - formally typeset
Search or ask a question
Author

Bula J. Bhattacharyya

Bio: Bula J. Bhattacharyya is an academic researcher from Northwestern University. The author has contributed to research in topics: Neural stem cell & Neuromuscular junction. The author has an hindex of 18, co-authored 22 publications receiving 1359 citations. Previous affiliations of Bula J. Bhattacharyya include University of California, San Francisco.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that ax encodes ubiquitin-specific protease 14 (Usp14), and expression of Usp14 is significantly altered in axJ/axJ mice as a result of the insertion of an intracisternal-A particle (IAP) into intron 5 of USp14.
Abstract: Mice that are homozygous with respect to a mutation (ax(J)) in the ataxia (ax) gene develop severe tremors by 2-3 weeks of age followed by hindlimb paralysis and death by 6-10 weeks of age. Here we show that ax encodes ubiquitin-specific protease 14 (Usp14). Ubiquitin proteases are a large family of cysteine proteases that specifically cleave ubiquitin conjugates. Although Usp14 can cleave a ubiquitin-tagged protein in vitro, it is unable to process polyubiquitin, which is believed to be associated with the protein aggregates seen in Parkinson disease, spinocerebellar ataxia type 1 (SCA1; ref. 4) and gracile axonal dystrophy (GAD). The physiological substrate of Usp14 may therefore contain a mono-ubiquitin side chain, the removal of which would regulate processes such as protein localization and protein activity. Expression of Usp14 is significantly altered in ax(J)/ax(J) mice as a result of the insertion of an intracisternal-A particle (IAP) into intron 5 of Usp14. In contrast to other neurodegenerative disorders such as Parkinson disease and SCA1 in humans and GAD in mice, neither ubiquitin-positive protein aggregates nor neuronal cell loss is detectable in the central nervous system (CNS) of ax(J) mice. Instead, ax(J) mice have defects in synaptic transmission in both the central and peripheral nervous systems. These results suggest that ubiquitin proteases are important in regulating synaptic activity in mammals.

250 citations

Journal ArticleDOI
TL;DR: Observations that have demonstrated the important role of chemokine signaling in the regulation of stem cell migration in both normal and pathological situations are discussed.

181 citations

Journal ArticleDOI
TL;DR: It is demonstrated here a method for the derivation of a predominantly pure population of BFCN from hESC cells using diffusible ligands present in the forebrain at developmentally relevant time periods and siRNA‐mediated knockdown of the transcription factors blocks B FCN generation by the diffusable ligands, clearly demonstrating the factors both necessary and sufficient for the controlled derivation.
Abstract: An early substantial loss of basal forebrain cholinergic neurons (BFCN) is a constant feature of Alzheimer's disease and is associated with deficits in spatial learning and memory. The ability to selectively control the differentiation of human embryonic stem cells (hESCs) into BFCN would be a significant step toward a cell replacement therapy. We demonstrate here a method for the derivation of a predominantly pure population of BFCN from hESC cells using diffusible ligands present in the forebrain at developmentally relevant time periods. Overexpression of two relevant human transcription factors in hESC-derived neural progenitors also generates BFCN. These neurons express only those markers characteristic of BFCN, generate action potentials, and form functional cholinergic synapses in murine hippocampal slice cultures. siRNA-mediated knockdown of the transcription factors blocks BFCN generation by the diffusible ligands, clearly demonstrating the factors both necessary and sufficient for the controlled derivation of this neuronal population. The ability to selectively control the differentiation of hESCs into BFCN is a significant step both for understanding mechanisms regulating BFCN lineage commitment and for the development of both cell transplant-mediated therapeutic interventions for Alzheimer's disease and high-throughput screening for agents that promote BFCN survival.

162 citations

Journal ArticleDOI
TL;DR: Electrophysiological recordings from slices of the DG demonstrated that neural progenitors received both tonic and phasic GABAergic inputs and that SDF-1 enhanced GABAergic transmission, probably by a postsynaptic mechanism.
Abstract: Stromal cell-derived factor-1 (SDF-1) and its receptor CXC chemokine receptor 4 (CXCR4) are important regulators of the development of the dentate gyrus (DG). Both SDF-1 and CXCR4 are also highly expressed in the adult DG. We observed that CXCR4 receptors were expressed by dividing neural progenitor cells located in the subgranular zone (SGZ) as well as their derivatives including doublecortin-expressing neuroblasts and immature granule cells. SDF-1 was located in DG neurons and in endothelial cells associated with DG blood vessels. SDF-1-expressing neurons included parvalbumin-containing GABAergic interneurons known as basket cells. Using transgenic mice expressing an SDF-1-mRFP1 (monomeric red fluorescence protein 1) fusion protein we observed that SDF-1 was localized in synaptic vesicles in the terminals of basket cells together with GABA-containing vesicles. These terminals were often observed to be in close proximity to dividing nestin-expressing neural progenitors in the SGZ. Electrophysiological recordings from slices of the DG demonstrated that neural progenitors received both tonic and phasic GABAergic inputs and that SDF-1 enhanced GABAergic transmission, probably by a postsynaptic mechanism. We also demonstrated that, like GABA, SDF-1 was tonically released in the DG and that GABAergic transmission was partially dependent on coreleased SDF-1. These data demonstrate that SDF-1 plays a novel role as a neurotransmitter in the DG and regulates the strength of GABAergic inputs to the pool of dividing neural progenitors. Hence, SDF-1/CXCR4 signaling is likely to be an important regulator of adult neurogenesis in the DG.

148 citations

Journal ArticleDOI
TL;DR: The ability to generate BFCNs with an AD phenotype is a significant step both for understanding disease mechanisms and for facilitating screening for agents that promote synaptic integrity and neuronal survival.
Abstract: An early substantial loss of basal forebrain cholinergic neurons (BFCNs) is a constant feature of Alzheimer’s disease (AD) and is associated with deficits in spatial learning and memory. Induced pluripotent stem cells (iPSCs) derived from patients with AD as well as from normal controls could be efficiently differentiated into neurons with characteristics of BFCNs. We used BFCNs derived from iPSCs to model sporadic AD with a focus on patients with ApoE3/E4 genotypes (AD-E3/E4). BFCNs derived from AD-E3/E4 patients showed typical AD biochemical features evidenced by increased Aβ42/Aβ40 ratios. AD-E3/E4 neurons also exhibited altered responses to treatment with γ-secretase inhibitors compared to control BFCNs or neurons derived from patients with familial AD. BFCNs from patients with AD-E3/E4 also exhibited increased vulnerability to glutamate-mediated cell death which correlated with increased intracellular free calcium upon glutamate exposure. The ability to generate BFCNs with an AD phenotype is a significant step both for understanding disease mechanisms and for facilitating screening for agents that promote synaptic integrity and neuronal survival.

137 citations


Cited by
More filters
Journal ArticleDOI
26 May 2011-Neuron
TL;DR: Major advances in understanding of adult mammalian neurogenesis in the dentate gyrus of the hippocampus and from the subventricular zone of the lateral ventricle, the rostral migratory stream to the olfactory bulb are reviewed.

2,308 citations

Journal ArticleDOI
TL;DR: This research presents a novel and scalable approach to personalized medicine that addresses the underlying cause of inflammation in patients withumatoid arthritis and shows real-world implications for treatment and prognosis.
Abstract: Osteoarthritis (OA) is the most common form of arthritis and a major cause of pain and disability in older adults (1) Often OA is referred to as degenerative joint disease “(DJD)” This is a misnomer because OA is not simply a process of wear and tear but rather abnormal remodeling of joint tissues driven by a host of inflammatory mediators within the affected joint The most common risk factors for OA include age, gender, prior joint injury, obesity, genetic predisposition, and mechanical factors, including malalignment and abnormal joint shape (2, 3) Despite the multifactorial nature of OA, the pathological changes seen in osteoarthritic joints have common features that affect the entire joint structure resulting in pain, deformity and loss of function The pathologic changes seen in OA joints (Figures 1 and ​and2)2) include degradation of the articular cartilage, thickening of the subchondral bone, osteophyte formation, variable degrees of synovial inflammation, degeneration of ligaments and, in the knee, the menisci, and hypertrophy of the joint capsule There can also be changes in periarticular muscles, nerves, bursa, and local fat pads that may contribute to OA or the symptoms of OA The findings of pathological changes in all of the joint tissues are the impetus for considering OA as a disease of the joint as an organ resulting in “joint failure” In this review, we will summarize the key features of OA in the various joint tissues affected and provide an overview of the basic mechanisms currently thought to contribute to the pathological changes seen in these tissues Open in a separate window Figure 1 Sagittal inversion recovery (A–C) and coronal fast spin echo (D–F) images illustrating the magnetic resonance imaging findings of osteoarthritis (A) reactive synovitis (thick white arrow), (B) subchondral cyst formation (white arrow), (C) bone marrow edema (thin white arrows), (D) partial thickness cartilage wear (thick black arrow), (E–F) full thickness cartilage wear (thin black arrows), subchondral sclerosis (arrowhead) and marginal osteophyte formation (double arrow) Image courtesy of Drs Hollis Potter and Catherine Hayter, Hospital for Special Surgery, New York, NY

2,039 citations

Journal ArticleDOI
02 Dec 2005-Cell
TL;DR: An inventory of the deubiquitinating enzymes encoded in the human genome is presented and the literature concerning these enzymes is reviewed, with particular emphasis on their function, specificity, and the regulation of their activity.

1,691 citations

Journal ArticleDOI
TL;DR: A review of recent studies of the regulation of DUB activity and their roles in various cellular processes can be found in this paper, where the authors discuss ubiquitin-specific DUBs and some of the generalizations emerging from recent studies.
Abstract: Deubiquitinating enzymes (DUBs) are proteases that process ubiquitin or ubiquitin-like gene products, reverse the modification of proteins by a single ubiquitin(-like) protein, and remodel polyubiquitin(-like) chains on target proteins. The human genome encodes nearly 100 DUBs with specificity for ubiquitin in five gene families. Most DUB activity is cryptic, and conformational rearrangements often occur during the binding of ubiquitin and/or scaffold proteins. DUBs with specificity for ubiquitin contain insertions and extensions modulating DUB substrate specificity, protein-protein interactions, and cellular localization. Binding partners and multiprotein complexes with which DUBs associate modulate DUB activity and substrate specificity. Quantitative studies of activity and protein-protein interactions, together with genetic studies and the advent of RNAi, have led to new insights into the function of yeast and human DUBs. This review discusses ubiquitin-specific DUBs, some of the generalizations emerging from recent studies of the regulation of DUB activity, and their roles in various cellular processes.

1,269 citations

Journal ArticleDOI
TL;DR: The progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine are discussed, and the remaining challenges and the emerging opportunities in the field are considered.
Abstract: Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, human iPSCs have been widely used for disease modelling, drug discovery and cell therapy development. This article discusses progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, including the powerful combination of human iPSC technology with recent developments in gene editing.

985 citations