scispace - formally typeset
Search or ask a question
Author

Bumjoon J. Kim

Bio: Bumjoon J. Kim is an academic researcher from KAIST. The author has contributed to research in topics: Polymer solar cell & Materials science. The author has an hindex of 61, co-authored 266 publications receiving 12980 citations. Previous affiliations of Bumjoon J. Kim include University of California, Santa Barbara & Lawrence Berkeley National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester as the electron acceptor and exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices.
Abstract: All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices.

701 citations

Journal ArticleDOI
TL;DR: A simple procedure is described to incorporate gold nanoparticles and control their location within symmetric poly(styrene-b-2 vinyl pyridine) (PS-PVP) diblock copolymers.
Abstract: A simple procedure is described to incorporate gold nanoparticles and control their location within symmetric poly(styrene-b-2 vinyl pyridine) (PS-PVP) diblock copolymers. Gold nanoparticles coated with thiol-terminated PS and/or PVP homopolymer chains (Mn approximately 1300 and 1500 g/mol, respectively) are incorporated into alternating lamellar layers of PS and PVP (total Mn approximately 196 500 g/mol). The location of the particles is controlled by varying the composition of ligands on the particle surfaces. In particular, gold particles coated with 100% PS or PVP reside near the center of the respective polymer domains, while particles coated with a mixture of both homopolymers reside at the interfaces between the two blocks.

564 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of the important work in all-PSCs including rational design rules for efficient PDs and PAs, blend morphology control, and light harvesting engineering, and highlights the importance of all- PSCs for future implementation and commercialization.
Abstract: All-polymer solar cells (all-PSCs) consisting of polymer donors (PDs) and polymer acceptors (PAs) have drawn tremendous research interest in recent years. It is due to not only their tunable optical, electrochemical, and structural properties, but also many superior features that are not readily available in conventional polymer-fullerene solar cells (fullerene-PSCs) including long-term stability, synthetic accessibility, and excellent film-forming properties suitable for large-scale manufacturing. Recent breakthroughs in material design and device engineering have driven the power conversion efficiencies (PCEs) of all-PSCs exceeding 11%, which is comparable to the performance of fullerene-PSCs. Furthermore, outstanding mechanical durability and stretchability have been reported for all-PSCs, which make them stand out from the other small molecule-based PSCs as a promising power supplier for wearable electronic devices. This review provides a comprehensive overview of the important work in all-PSCs, in which pertinent examples are deliberately chosen. First, we describe the key components that enabled the recent progresses of all-PSCs including rational design rules for efficient PDs and PAs, blend morphology control, and light harvesting engineering. We also review the recent work on the understanding of the stability of all-PSCs under various external conditions, which highlights the importance of all-PSCs for future implementation and commercialization. Finally, because all-PSCs have not yet achieved their full potential and are still undergoing rapid development, we offer our views on the current challenges and future prospects.

479 citations

Journal ArticleDOI
TL;DR: A design principle for semicrystalline conjugated polymers in fullerene-composite solar cells in which crystallization-driven phase separation can be dramatically suppressed via the introduction of a controlled amount of disorder into the polymer backbone is suggested.
Abstract: A comparison of three samples of poly(3-hexylthiophene) having regioregularities of 86, 90, and 96% is used to elucidate the effect of regioregularity on polymer−fullerene-composite solar cell performance. It is observed that polymer samples with lower regioregularity are capable of generating fullerene composites that exhibit superior thermal stability. The enhanced thermal stability of the composites is attributed to a lower driving force for polymer crystallization in the less regioregular polymer samples, which is supported with two-dimensional grazing incidence X-ray scattering and differential scanning calorimetry measurements. Furthermore, it is demonstrated that all three polymer samples are capable of generating solar cells with equivalent peak efficiencies of ∼4% in blends with [6,6]-phenyl-C61-butyric acid methyl ester. While it may be non-intuitive that polymers with lower regioregularity can exhibit higher efficiencies, it is observed that the charge-carrier mobility of the three polymers is ...

409 citations

Journal ArticleDOI
Hyunbum Kang1, Wonho Lee1, Jiho Oh1, Taesu Kim1, Changyeon Lee1, Bumjoon J. Kim1 
TL;DR: By optimization of the parameters discussed above, the PCE values of all-PSCs will surpass the 10% level in the near future and that all- PSCs are promising candidates for the successful realization of flexible and portable power generators.
Abstract: ConspectusAll-polymer solar cells (all-PSCs), consisting of conjugated polymers as both electron donor (PD) and acceptor (PA), have recently attracted great attention. Remarkable progress has been achieved during the past few years, with power conversion efficiencies (PCEs) now approaching 8%. In this Account, we first discuss the major advantages of all-PSCs over fullerene–polymer solar cells (fullerene-PSCs): (i) high light absorption and chemical tunability of PA, which affords simultaneous enhancement of both the short-circuit current density (JSC) and the open-circuit voltage (VOC), and (ii) superior long-term stability (in particular, thermal and mechanical stability) of all-PSCs due to entangled long PA chains. In the second part of this Account, we discuss the device operation mechanism of all-PSCs and recognize the major challenges that need to be addressed in optimizing the performance of all-PSCs. The major difference between all-PSCs and fullerene-PSCs originates from the molecular structures ...

381 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: The advent of AuNP as a sensory element provided a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.
Abstract: Detection of chemical and biological agents plays a fundamental role in biomedical, forensic and environmental sciences1–4 as well as in anti bioterrorism applications.5–7 The development of highly sensitive, cost effective, miniature sensors is therefore in high demand which requires advanced technology coupled with fundamental knowledge in chemistry, biology and material sciences.8–13 In general, sensors feature two functional components: a recognition element to provide selective/specific binding with the target analytes and a transducer component for signaling the binding event. An efficient sensor relies heavily on these two essential components for the recognition process in terms of response time, signal to noise (S/N) ratio, selectivity and limits of detection (LOD).14,15 Therefore, designing sensors with higher efficacy depends on the development of novel materials to improve both the recognition and transduction processes. Nanomaterials feature unique physicochemical properties that can be of great utility in creating new recognition and transduction processes for chemical and biological sensors15–27 as well as improving the S/N ratio by miniaturization of the sensor elements.28 Gold nanoparticles (AuNPs) possess distinct physical and chemical attributes that make them excellent scaffolds for the fabrication of novel chemical and biological sensors (Figure 1).29–36 First, AuNPs can be synthesized in a straightforward manner and can be made highly stable. Second, they possess unique optoelectronic properties. Third, they provide high surface-to-volume ratio with excellent biocompatibility using appropriate ligands.30 Fourth, these properties of AuNPs can be readily tuned varying their size, shape and the surrounding chemical environment. For example, the binding event between recognition element and the analyte can alter physicochemical properties of transducer AuNPs, such as plasmon resonance absorption, conductivity, redox behavior, etc. that in turn can generate a detectable response signal. Finally, AuNPs offer a suitable platform for multi-functionalization with a wide range of organic or biological ligands for the selective binding and detection of small molecules and biological targets.30–32,36 Each of these attributes of AuNPs has allowed researchers to develop novel sensing strategies with improved sensitivity, stability and selectivity. In the last decade of research, the advent of AuNP as a sensory element provided us a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.37 Figure 1 Physical properties of AuNPs and schematic illustration of an AuNP-based detection system. In this current review, we have highlighted the several synthetic routes and properties of AuNPs that make them excellent probes for different sensing strategies. Furthermore, we will discuss various sensing strategies and major advances in the last two decades of research utilizing AuNPs in the detection of variety of target analytes including metal ions, organic molecules, proteins, nucleic acids, and microorganisms.

3,879 citations

Journal ArticleDOI
TL;DR: Fluorene-Based Copolymers ContainingPhosphorescent Complexes and Carbazole-Based Conjugated Polymers R5.1.3.
Abstract: -phenylenevinylene)s L4. Fluorene-Based Conjugated Polymers L4.1. Fluorene-Based Copolymers ContainingElectron-Rich MoietiesM4.2. Fluorene-Based Copolymers ContainingElectron-Deficient MoietiesN4.3. Fluorene-Based Copolymers ContainingPhosphorescent ComplexesQ5. Carbazole-Based Conjugated Polymers R5.1. Poly(2,7-carbazole)-Based Polymers R5.2. Indolo[3,2-

3,686 citations

Journal ArticleDOI
TL;DR: The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility.
Abstract: Although the field of polymer solar cell has seen much progress in device performance in the past few years, several limitations are holding back its further development For instance, current high-efficiency (>90%) cells are restricted to material combinations that are based on limited donor polymers and only one specific fullerene acceptor Here we report the achievement of high-performance (efficiencies up to 108%, fill factors up to 77%) thick-film polymer solar cells for multiple polymer:fullerene combinations via the formation of a near-ideal polymer:fullerene morphology that contains highly crystalline yet reasonably small polymer domains This morphology is controlled by the temperature-dependent aggregation behaviour of the donor polymers and is insensitive to the choice of fullerenes The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility

2,839 citations

Journal ArticleDOI
17 Nov 2006-Science
TL;DR: A challenge for future studies is to create hierarchically structured composites in which each sublayer contributes a distinct function to yield a mechanically integrated, multifunctional material.
Abstract: The mixing of polymers and nanoparticles is opening pathways for engineering flexible composites that exhibit advantageous electrical, optical, or mechanical properties. Recent advances reveal routes to exploit both enthalpic and entropic interactions so as to direct the spatial distribution of nanoparticles and thereby control the macroscopic performance of the material. For example, by tailoring the particle coating and size, researchers have created self-healing materials for improved sustainability and self-corralling rods for photovoltaic applications. A challenge for future studies is to create hierarchically structured composites in which each sublayer contributes a distinct function to yield a mechanically integrated, multifunctional material.

2,396 citations