scispace - formally typeset
Search or ask a question
Author

Burton H. Jones

Bio: Burton H. Jones is an academic researcher from King Abdullah University of Science and Technology. The author has contributed to research in topics: Upwelling & Phytoplankton. The author has an hindex of 30, co-authored 112 publications receiving 2735 citations. Previous affiliations of Burton H. Jones include University of Southern California & IBM.
Topics: Upwelling, Phytoplankton, Coral reef, Coral, Plume


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the data collected by the US JGOFS Arabian Sea Process Experiment (JGOFS) during all seasons in the northern Arabian Sea and found that the region exhibits considerable mesoscale variability resulting in extremely variable temperature-salinity (TS) distributions in the upper 1000db.
Abstract: Between September 1994 and December 1995, the US JGOFS Arabian Sea Process Experiment collected extensive, high quality hydrographic data (temperature, salinity, dissolved oxygen and nutrients) during all seasons in the northern Arabian Sea. An analysis of this unique data suite suggests the presence of many features that are described in the canonical literature, but these new data provided the following insights. 1. Although the seasonal evolution of mixed-layer depths was in general agreement with previous descriptions, the deepest mixed-layer depths in our data occurred during the late NE Monsoon instead of the SW Monsoon. 2. The region exhibits considerable mesoscale variability resulting in extremely variable temperature-salinity (TS) distributions in the upper 1000 db. This mesoscale variability is readily observed in satellite imaging, in the high resolution data taken by a companion ONR funded project, and in underway ADCP data. 3. The densest water reaching the sea surface during coastal upwelling appeared to have maximum offshore depths of ∼150 m and σ θ ’s close to the core value (∼25) for the saline Arabian Sea Water (ASW), but salinities in these upwelling waters were relatively low. The densest water found at the sea surface during late NE Monsoon conditions has σ θ ’s>24.8 and relatively high salinities, suggesting that they are a source for the ASW salinity maximum. 4. Persian Gulf Water (PGW) with a core σ θ of 26.6 forms a widespread salinity maximum. Despite the considerable extent of this feature, Persian Gulf outflow water, with a salinity (4) of ∼39 at its source, can only be a minor contributor. Within the standard US JGOFS sampling grid, maximum salinities on this surface are ∼36.8 at stations near the Gulf, falling to values as low as ∼35.3 at the stations farthest removed from its influence. Even at our standard stations closest to the Gulf (N-1 and N-2), the high-salinity, low-nutrient Persian Gulf water has only a modest direct effect on nutrient concentrations. This PGW salinity maximum is associated with the suboxic portions of the Arabian Sea’s oxygen minimum zone. 5. The salinity maximum associated with Red Sea Water (RSW, core σ θ =27.2) in the JGOFS study region is clearly evident at the southermost sampling site at 10′N (S-15). Elsewhere, this signal is weak or absent and salinity on the 27.2 σ θ surface tends to increase towards the Persian Gulf, suggesting that the disappearance of this salinity maximum is due, at least in part, to the influence of the Persian Gulf outflow. 6. Inorganic nitrogen-to-phosphate ratios were lower (frequently much lower) than the standard Redfield ratio of 15/1–16/1 (by atoms) at all times and all depths suggesting that inorganic nitrogen was more important than phosphate as a limiting nutrient for phytoplankton growth, and that the effects of denitrification dominated the effects of nitrogen fixation. 7. The water upwelling off the Omani coast during the SW Monsoon has inorganic nitrogen to silicate ratios that were higher (∼2/1) than the ∼1/1 ratio often assumed as the ratio of uptake during diatom growth. 8. The temporal evolution of inorganic nitrogen-to-silicate ratios suggests major alteration by diatom uptake only during the late SW Monsoon cruise (TN050) in August–September 1995. 9. Widespread moderate surface layer nutrient concentrations occurred during the late NE Monsoon. 10. A zone of high offshore nutrient concentrations was encountered during the SW Monsoon, but instead of being associated with offshore upwelling it may represent offshore advection from the coastal upwelling zone, the influence of an eddy, or both. 11. Although our data do not contradict previous suggestions that the volume of subtoxic water may be reduced the SW Monsoon, they suggest a weaker re-oxygenation than indicated by some previous work. Similarly, they do not confirm results suggesting that secondary nitrite maxima may be common in waters with oxygen concentrations >5 μM.

257 citations

Journal ArticleDOI
TL;DR: In this article, the seasonal and spatial variability of the upper ocean response to the Monsoon cycle in the Arabian Sea was examined using four towed profiler surveys conducted between December 1994 and October 1995.
Abstract: Observations from four towed profiler surveys undertaken between December 1994 and October 1995 examine the seasonal and spatial variability of the upper ocean response to the Monsoon cycle in the Arabian Sea. Although observed atmospheric forcing agrees well with modern climatologies, cross-basin patterns of mixed-layer depth and water properties observed in 1994–1995 are not entirely consistent with an upper-ocean response dominated by Ekman pumping. During the winter monsoon, the mixed-layer deepens dramatically with distance offshore. Surface cooling intensifies with offshore distance, and a one-dimensional response dominated by convective overturning could explain observed wintertime mixed-layer depths. Except for waters associated with a filament extending offshore from the Omani coast, mixed-layer depths and water properties show only modest cross-basin contrasts during the Southwest Monsoon. Filament waters differ from surrounding mid-basin waters, having shallow mixed-layers and water properties similar to those of waters upwelled near the Omani coast. In September, following the Southwest Monsoon, waters within 1000 km of the Omani coast have cooled and freshened, with marked changes in stratification extending well into the pycnocline. Estimates of Ekman pumping and wind-driven entrainment made using the Southampton Oceanographic Center 1980–1995 surface flux and the Levitus mixed-layer climatologies indicate that during the Southwest Monsoon wind-driven entrainment is considerably stronger than Ekman pumping. Inshore of the windstress maximum, Ekman pumping partially counters wind-driven entrainment, while offshore the two processes act together to deepen the mixed-layer. As Ekman pumping is too weak to counter wind-driven mixed-layer deepening inshore of the windstress maximum, another mechanism must act to maintain the shallow mixed-layers seen in our observations and in climatologies. Offshore advection of coastally upwelled water offers a mechanism for maintaining upper ocean stratification that is consistent with observed changes in upper ocean water properties. Ekman upwelling will modulate wind-driven entrainment, but these results indicate that the primary mechanisms acting inshore of the windstress maximum are wind-driven mixing and horizontal advection.

197 citations

Journal ArticleDOI
TL;DR: Investigation of the dispersion of stormwater plumes in Santa Monica Bay and the resultant impacts on the water column and benthos found zinc was the primary cause of toxicity in both Ballona Creek stormwater and the discharge plume.

105 citations

Journal ArticleDOI
TL;DR: In this article, an interdisciplinary model was developed to elucidate the biogeochemical processes involved in supporting the elevated productivity in the northern Arabian Sea, which consisted of a 1-D mixed-layer model coupled to a set of equations that tracked phytoplankton growth and the concentration of the two major nutrients (nitrate and ammonium).
Abstract: In the northern Arabian Sea, atmospheric conditions during the Northeast (winter) Monsoon lead to deep convective mixing. Due to the proximity of the permanent pycnocline to the sea surface, this mixing does not penetrate below 125 m. However, a strong nitracline is also present and the deep convection results in significant nitrate flux into the surface waters. This leads to nitrate concentrations over the upper 100 m that exceed 4 μM toward the end of the monsoon. During the 1994/1995 US JGOFS/Arabian Sea expedition, the mean areal gross primary production over two successive Northeast Monsoons was determined to be 1.35 gC/m2/d. Thus, despite the deep penetrative convection, high rates of primary productivity were maintained. An interdisciplinary model was developed to elucidate the biogeochemical processes involved in supporting the elevated productivity. This model consisted of a 1-D mixed-layer model coupled to a set of equations that tracked phytoplankton growth and the concentration of the two major nutrients (nitrate and ammonium). Zooplankton grazing was parameterized by a rate constant determined by shipboard experiments. Model boundary conditions consist of meteorological time-series measured from the surface buoy that was part of the ONR Arabian Sea Experiment's central mooring. Our numerical experiments show that elevated surface evaporation, and the associated salinization of the mixed layer, strongly contributes to the frequency and penetration depth of the observed convective mixing. Cooler surface temperatures, increased nitrate entrainment, reduced water column stratification, and lower near-surface chlorophyll a concentrations all result from this enhanced mixing. The model also captured a dependence on regenerated nitrogen observed in nutrient uptake experiments performed during the Northeast Monsoon. Our numerical experiments also indicate that variability in mean pycnocline depth causes up to a 25% reduction in areal chlorophyll a concentration. We hypothesize that such shifts in pycnocline depth may contribute to the interannual variations in primary production and surface chlorophyll a concentration that have been previously observed in this region.

104 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a variety of bio-optical, hydrographic, and geochemical indicators to identify subducted water masses associated with the layers in a coastal upwelling system.
Abstract: Observations during the Coastal Transition Zone (CTZ) experiment in summer 1988 reveal the presence of deep phytoplankton layers in a coastal upwelling system. The layers occur throughout the CTZ study area, including a strong baroclinic jet which was present over the period of the experiment. On the basis of a variety of bio-optical, hydrographic, and geochemical indicators, it is concluded that the water masses associated with the layers result from subduction processes. Criteria are developed for identification of subducted water masses based on the beam attenuation coefficient, chlorophyll fluorescence, and distribution of light in the water column. Temperature-salinity characteristics are consistent with two source regions for the subducted layers, one nearshore and a second farther offshore. Most of the layers correspond to the inshore source which is apparently distributed alongshore. Subducted water masses are found in all six grid surveys of the CTZ experiment and '} .

82 citations


Cited by
More filters
01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

01 Jan 2016
TL;DR: The numerical heat transfer and fluid flow is universally compatible with any devices to read and is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you for reading numerical heat transfer and fluid flow. Maybe you have knowledge that, people have search numerous times for their favorite books like this numerical heat transfer and fluid flow, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious virus inside their computer. numerical heat transfer and fluid flow is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the numerical heat transfer and fluid flow is universally compatible with any devices to read.

1,531 citations

Journal ArticleDOI
TL;DR: In this article, the authors review observations, theory and model results on the monsoon circulation of the Indian Ocean and discuss possible physical mechanisms behind seasonal variability of the meridional overturning streamfunction and heat flux.

1,437 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a new estimate of 450 Tg N 2 O yr -1 (Tg = 10 12 g) for the global ocean, which can be explained only by positing an ocean that has deviated far from a steady state, the need for a major upwards revision of fixed N inputs, particularly nitrogen fixation, or both.
Abstract: New data force us to raise previous estimates of oceanic denitrification. Our revised estimate of ~ 450 Tg N yr -1 (Tg = 10 12 g) produces an oceanic fixed N budget with a large deficit (~ 200 Tg N yr -1 ) that can be explained only by positing an ocean that has deviated far from a steady-state, the need for a major upwards revision of fixed N inputs, particularly nitrogen fixation, or both. Oceanic denitrification can be significantly altered by small re-distributions of carbon and dissolved oxygen. Since fixed N is a limiting nutrient, uncompensated changes in denitrification affect the ocean´s ability to sequester atmospheric CO 2 via the "biological pump". We have also had to modify our concepts of the oceanic N 2 O regime to take better account of the extremely high N 2 O saturations that can arise in productive, low oxygen waters. Recent results from the western Indian Shelf during a period when hypoxic, suboxic and anoxic waters were present produced a maximum surface N 2 O saturation of > 8000%, a likely consequence of "stop and go" denitrification. The sensitivity of N 2 O production and consumption to small changes in the oceanic dissolved oxygen distribution and to the "spin-up" phase of denitrification suggests that the oceanic source term for N 2 O could change rapidly.

772 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of all the important theoretical and experimental advances on silicene to date, from the basic theory of intrinsic properties, experimental synthesis and characterization, modulation of physical properties by modifications, and finally to device explorations is presented.

676 citations