scispace - formally typeset
Search or ask a question
Author

Buyung Pal Yu

Bio: Buyung Pal Yu is an academic researcher from University of Texas Health Science Center at San Antonio. The author has contributed to research in topics: Reactive oxygen species. The author has an hindex of 1, co-authored 1 publications receiving 2421 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Ceruloplasmin should appear as follows: [See PDF]
Abstract: Pages 139–162: Yu. “Cellular Defenses Against Damage From Reactive Oxygen Species.” Page 150: The section 2. Ceruloplasmin should appear as follows: [See PDF]

2,499 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The status of the free radical theory of aging is reviewed, by categorizing the literature in terms of the various types of experiments that have been performed, which include phenomenological measurements of age-associated oxidative stress, interspecies comparisons, dietary restriction, and the ongoing elucidation of the role of active oxygen in biology.
Abstract: Beckman, Kenneth B., and Bruce N. Ames. The Free Radical Theory of Aging Matures. Physiol. Rev. 78: 547–581, 1998. — The free radical theory of aging, conceived in 1956, has turned 40 and is rapidl...

3,812 citations

Journal ArticleDOI
TL;DR: Recognition of upstream and downstream antioxidant therapy to oxidative stress has been proved an effective tool in alteration of any neuronal damage as well as free radical scavenging.
Abstract: Free radicals are common outcome of normal aerobic cellular metabolism. In-built antioxidant system of body plays its decisive role in prevention of any loss due to free radicals. However, imbalanced defense mechanism of antioxidants, overproduction or incorporation of free radicals from environment to living system leads to serious penalty leading to neuro-degeneration. Neural cells suffer functional or sensory loss in neurodegenerative diseases. Apart from several other environmental or genetic factors, oxidative stress (OS) leading to free radical attack on neural cells contributes calamitous role to neuro-degeneration. Though, oxygen is imperative for life, imbalanced metabolism and excess reactive oxygen species (ROS) generation end into a range of disorders such as Alzheimer's disease, Parkinson's disease, aging and many other neural disorders. Toxicity of free radicals contributes to proteins and DNA injury, inflammation, tissue damage and subsequent cellular apoptosis. Antioxidants are now being looked upon as persuasive therapeutic against solemn neuronal loss, as they have capability to combat by neutralizing free radicals. Diet is major source of antioxidants, as well as medicinal herbs are catching attention to be commercial source of antioxidants at present. Recognition of upstream and downstream antioxidant therapy to oxidative stress has been proved an effective tool in alteration of any neuronal damage as well as free radical scavenging. Antioxidants have a wide scope to sequester metal ions involved in neuronal plaque formation to prevent oxidative stress. In addition, antioxidant therapy is vital in scavenging free radicals and ROS preventing neuronal degeneration in post-oxidative stress scenario.

2,874 citations

Journal ArticleDOI
TL;DR: This novel ROS-dependent death allows neutrophils to fulfill their antimicrobial function, even beyond their lifespan.
Abstract: Neutrophil extracellular traps (NETs) are extracellular structures composed of chromatin and granule proteins that bind and kill microorganisms. We show that upon stimulation, the nuclei of neutrophils lose their shape, and the eu- and heterochromatin homogenize. Later, the nuclear envelope and the granule membranes disintegrate, allowing the mixing of NET components. Finally, the NETs are released as the cell membrane breaks. This cell death process is distinct from apoptosis and necrosis and depends on the generation of reactive oxygen species (ROS) by NADPH oxidase. Patients with chronic granulomatous disease carry mutations in NADPH oxidase and cannot activate this cell-death pathway or make NETs. This novel ROS-dependent death allows neutrophils to fulfill their antimicrobial function, even beyond their lifespan.

2,481 citations

Journal ArticleDOI
TL;DR: O Ongoing research continues to probe the mechanisms by which oxidants influence skeletal muscle contractile properties and to explore interventions capable of protecting muscle from oxidant-mediated dysfunction.
Abstract: The first suggestion that physical exercise results in free radical-mediated damage to tissues appeared in 1978, and the past three decades have resulted in a large growth of knowledge regarding exercise and oxidative stress. Although the sources of oxidant production during exercise continue to be debated, it is now well established that both resting and contracting skeletal muscles produce reactive oxygen species and reactive nitrogen species. Importantly, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Furthermore, oxidants can modulate a number of cell signaling pathways and regulate the expression of multiple genes in eukaryotic cells. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, DNA repair proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species promote contractile dysfunction resulting in muscle weakness and fatigue. Ongoing research continues to probe the mechanisms by which oxidants influence skeletal muscle contractile properties and to explore interventions capable of protecting muscle from oxidant-mediated dysfunction.

2,017 citations