scispace - formally typeset
Search or ask a question
Author

Byonghyo Shim

Bio: Byonghyo Shim is an academic researcher from Seoul National University. The author has contributed to research in topics: MIMO & Communication channel. The author has an hindex of 34, co-authored 253 publications receiving 4752 citations. Previous affiliations of Byonghyo Shim include Samsung & Korea University.


Papers
More filters
Journal ArticleDOI
TL;DR: The generalized OMP (gOMP) as discussed by the authors is a generalization of the OMP in the sense that multiple N indices are identified per iteration, and it is shown that the gOMP algorithm can perfectly reconstruct any K-sparse signals (K >; 1) provided that the sensing matrix satisfies the RIP with δNK <; [(√N)/(√K+3√ N)].
Abstract: As a greedy algorithm to recover sparse signals from compressed measurements, orthogonal matching pursuit (OMP) algorithm has received much attention in recent years. In this paper, we introduce an extension of the OMP for pursuing efficiency in reconstructing sparse signals. Our approach, henceforth referred to as generalized OMP (gOMP), is literally a generalization of the OMP in the sense that multiple N indices are identified per iteration. Owing to the selection of multiple “correct” indices, the gOMP algorithm is finished with much smaller number of iterations when compared to the OMP. We show that the gOMP can perfectly reconstruct any K-sparse signals (K >; 1), provided that the sensing matrix satisfies the RIP with δNK <; [(√N)/(√K+3√N)]. We also demonstrate by empirical simulations that the gOMP has excellent recovery performance comparable to l1-minimization technique with fast processing speed and competitive computational complexity.

517 citations

Journal ArticleDOI
TL;DR: The physical layer issues and enabling technologies including packet and frame structure, scheduling schemes, and reliability improvement techniques, which have been discussed in the 3GPP Release 15 standardization are elaborate.
Abstract: URLLC is a new service category in 5G to accommodate emerging services and applications having stringent latency and reliability requirements. In order to support URLLC, there should be both evolutionary and revolutionary changes in the air interface named 5G NR. In this article, we provide an up-to-date overview of URLLC with an emphasis on the physical layer challenges and solutions in 5G NR downlink. We highlight key requirements of URLLC and then elaborate the physical layer issues and enabling technologies including packet and frame structure, scheduling schemes, and reliability improvement techniques, which have been discussed in the 3GPP Release 15 standardization.

423 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide essential knowledge and useful tips and tricks that wireless communication researchers need to know when designing CS-based wireless systems, including basic setup, sparse recovery algorithm, and performance guarantee.
Abstract: As a paradigm to recover the sparse signal from a small set of linear measurements, compressed sensing (CS) has stimulated a great deal of interest in recent years. In order to apply the CS techniques to wireless communication systems, there are a number of things to know and also several issues to be considered. However, it is not easy to grasp simple and easy answers to the issues raised while carrying out research on CS. The main purpose of this paper is to provide essential knowledge and useful tips and tricks that wireless communication researchers need to know when designing CS-based wireless systems. First, we present an overview of the CS technique, including basic setup, sparse recovery algorithm, and performance guarantee. Then, we describe three distinct subproblems of CS, viz., sparse estimation, support identification, and sparse detection, with various wireless communication applications. We also address main issues encountered in the design of CS-based wireless communication systems. These include potentials and limitations of CS techniques, useful tips that one should be aware of, subtle points that one should pay attention to, and some prior knowledge to achieve better performance. Our hope is that this paper will be a useful guide for wireless communication researchers and even non-experts to get the gist of CS techniques.

272 citations

Journal ArticleDOI
TL;DR: Key features for FD-MIMO systems are presented, a summary of the major issues for the standardization and practical system design, and performance evaluations for typical FD- MIMO scenarios are presented.
Abstract: Multiple-input multiple-output (MIMO) systems with a large number of base station antennas, often called massive MIMO, have received much attention in academia and industry as a means to improve the spectral efficiency, energy efficiency, and processing complexity of next generation cellular systems. The mobile communication industry has initiated a feasibility study of massive MIMO systems to meet the increasing demand of future wireless systems. Field trials of the proof-of-concept systems have demonstrated the potential gain of the Full-Dimension MIMO (FD-MIMO), an official name for the MIMO enhancement in the 3rd generation partnership project (3GPP). 3GPP initiated standardization activity for the seamless integration of this technology into current 4G LTE systems. In this article, we provide an overview of FD-MIMO systems, with emphasis on the discussion and debate conducted on the standardization process of Release 13. We present key features for FD-MIMO systems, a summary of the major issues for the standardization and practical system design, and performance evaluations for typical FD-MIMO scenarios.

215 citations

Journal ArticleDOI
TL;DR: The resulting soft digital signal processing system achieves up to 60% and 44% energy savings with no loss in the signal-to-noise ratio (SNR) for receive filtering in a QPSK system and the butterfly of fast Fourier transform in a WLAN OFDM system.
Abstract: In this paper, we present a novel algorithmic noise-tolerance (ANT) technique referred to as reduced precision redundancy (RPR). RPR requires a reduced precision replica whose output can be employed as the corrected output in case the original system computes erroneously. When combined with voltage overscaling (VOS), the resulting soft digital signal processing system achieves up to 60% and 44% energy savings with no loss in the signal-to-noise ratio (SNR) for receive filtering in a QPSK system and the butterfly of fast Fourier transform (FFT) in a WLAN OFDM system, respectively. These energy savings are with respect to optimally scaled (i.e., the supply voltage equals the critical voltage V/sub dd-crit/) present day systems. Further, we show that the RPR technique is able to maintain the output SNR for error rates of up to 0.09/sample and 0.06/sample in an finite impulse response filter and a FFT block, respectively.

196 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper addresses the potential impact of pilot contamination caused by the use of non-orthogonal pilot sequences by users in adjacent cells, and analyzes the energy efficiency and degrees of freedom provided by massive MIMO systems to enable efficient single-carrier transmission.
Abstract: Massive multiple-input multiple-output (MIMO) wireless communications refers to the idea equipping cellular base stations (BSs) with a very large number of antennas, and has been shown to potentially allow for orders of magnitude improvement in spectral and energy efficiency using relatively simple (linear) processing. In this paper, we present a comprehensive overview of state-of-the-art research on the topic, which has recently attracted considerable attention. We begin with an information theoretic analysis to illustrate the conjectured advantages of massive MIMO, and then we address implementation issues related to channel estimation, detection and precoding schemes. We particularly focus on the potential impact of pilot contamination caused by the use of non-orthogonal pilot sequences by users in adjacent cells. We also analyze the energy efficiency achieved by massive MIMO systems, and demonstrate how the degrees of freedom provided by massive MIMO systems enable efficient single-carrier transmission. Finally, the challenges and opportunities associated with implementing massive MIMO in future wireless communications systems are discussed.

2,046 citations

Journal ArticleDOI
TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Abstract: There is considerable pressure to define the key requirements of 5G, develop 5G standards, and perform technology trials as quickly as possible. Normally, these activities are best done in series but there is a desire to complete these tasks in parallel so that commercial deployments of 5G can begin by 2020. 5G will not be an incremental improvement over its predecessors; it aims to be a revolutionary leap forward in terms of data rates, latency, massive connectivity, network reliability, and energy efficiency. These capabilities are targeted at realizing high-speed connectivity, the Internet of Things, augmented virtual reality, the tactile internet, and so on. The requirements of 5G are expected to be met by new spectrum in the microwave bands (3.3-4.2 GHz), and utilizing large bandwidths available in mm-wave bands, increasing spatial degrees of freedom via large antenna arrays and 3-D MIMO, network densification, and new waveforms that provide scalability and flexibility to meet the varying demands of 5G services. Unlike the one size fits all 4G core networks, the 5G core network must be flexible and adaptable and is expected to simultaneously provide optimized support for the diverse 5G use case categories. In this paper, we provide an overview of 5G research, standardization trials, and deployment challenges. Due to the enormous scope of 5G systems, it is necessary to provide some direction in a tutorial article, and in this overview, the focus is largely user centric, rather than device centric. In addition to surveying the state of play in the area, we identify leading technologies, evaluating their strengths and weaknesses, and outline the key challenges ahead, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.

1,659 citations

Journal ArticleDOI
TL;DR: This handbook is a very useful handbook for engineers, especially those working in signal processing, and provides real data bootstrap applications to illustrate the theory covered in the earlier chapters.
Abstract: tions. Bootstrap has found many applications in engineering field, including artificial neural networks, biomedical engineering, environmental engineering, image processing, and radar and sonar signal processing. Basic concepts of the bootstrap are summarized in each section as a step-by-step algorithm for ease of implementation. Most of the applications are taken from the signal processing literature. The principles of the bootstrap are introduced in Chapter 2. Both the nonparametric and parametric bootstrap procedures are explained. Babu and Singh (1984) have demonstrated that in general, these two procedures behave similarly for pivotal (Studentized) statistics. The fact that the bootstrap is not the solution for all of the problems has been known to statistics community for a long time; however, this fact is rarely touched on in the manuscripts meant for practitioners. It was first observed by Babu (1984) that the bootstrap does not work in the infinite variance case. Bootstrap Techniques for Signal Processing explains the limitations of bootstrap method with an example. I especially liked the presentation style. The basic results are stated without proofs; however, the application of each result is presented as a simple step-by-step process, easy for nonstatisticians to follow. The bootstrap procedures, such as moving block bootstrap for dependent data, along with applications to autoregressive models and for estimation of power spectral density, are also presented in Chapter 2. Signal detection in the presence of noise is generally formulated as a testing of hypothesis problem. Chapter 3 introduces principles of bootstrap hypothesis testing. The topics are introduced with interesting real life examples. Flow charts, typical in engineering literature, are used to aid explanations of the bootstrap hypothesis testing procedures. The bootstrap leads to second-order correction due to pivoting; this improvement in the results due to pivoting is also explained. In the second part of Chapter 3, signal processing is treated as a regression problem. The performance of the bootstrap for matched filters as well as constant false-alarm rate matched filters is also illustrated. Chapters 2 and 3 focus on estimation problems. Chapter 4 introduces bootstrap methods used in model selection. Due to the inherent structure of the subject matter, this chapter may be difficult for nonstatisticians to follow. Chapter 5 is the most impressive chapter in the book, especially from the standpoint of statisticians. It provides real data bootstrap applications to illustrate the theory covered in the earlier chapters. These include applications to optimal sensor placement for knock detection and land-mine detection. The authors also provide a MATLAB toolbox comprising frequently used routines. Overall, this is a very useful handbook for engineers, especially those working in signal processing.

1,292 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of knowledge distillation from the perspectives of knowledge categories, training schemes, teacher-student architecture, distillation algorithms, performance comparison and applications can be found in this paper.
Abstract: In recent years, deep neural networks have been successful in both industry and academia, especially for computer vision tasks. The great success of deep learning is mainly due to its scalability to encode large-scale data and to maneuver billions of model parameters. However, it is a challenge to deploy these cumbersome deep models on devices with limited resources, e.g., mobile phones and embedded devices, not only because of the high computational complexity but also the large storage requirements. To this end, a variety of model compression and acceleration techniques have been developed. As a representative type of model compression and acceleration, knowledge distillation effectively learns a small student model from a large teacher model. It has received rapid increasing attention from the community. This paper provides a comprehensive survey of knowledge distillation from the perspectives of knowledge categories, training schemes, teacher-student architecture, distillation algorithms, performance comparison and applications. Furthermore, challenges in knowledge distillation are briefly reviewed and comments on future research are discussed and forwarded.

1,027 citations

Proceedings ArticleDOI
27 May 2013
TL;DR: This paper reviews recent progress in the area, including design of approximate arithmetic blocks, pertinent error and quality measures, and algorithm-level techniques for approximate computing.
Abstract: Approximate computing has recently emerged as a promising approach to energy-efficient design of digital systems. Approximate computing relies on the ability of many systems and applications to tolerate some loss of quality or optimality in the computed result. By relaxing the need for fully precise or completely deterministic operations, approximate computing techniques allow substantially improved energy efficiency. This paper reviews recent progress in the area, including design of approximate arithmetic blocks, pertinent error and quality measures, and algorithm-level techniques for approximate computing.

921 citations