scispace - formally typeset
Search or ask a question
Author

Byoung Koun Min

Bio: Byoung Koun Min is an academic researcher from Korea Institute of Science and Technology. The author has contributed to research in topics: Copper indium gallium selenide solar cells & Solar cell. The author has an hindex of 36, co-authored 177 publications receiving 4709 citations. Previous affiliations of Byoung Koun Min include Korea University of Science and Technology & University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: DFT calculations enlightened that the specific interaction between Ag nanoparticle and the anchoring agents modified the catalyst surface to have a selectively higher affinity to the intermediate COOH over CO, which effectively lowers the overpotential.
Abstract: Selective electrochemical reduction of CO2 is one of the most sought-after processes because of the potential to convert a harmful greenhouse gas to a useful chemical. We have discovered that immobilized Ag nanoparticles supported on carbon exhibit enhanced Faradaic efficiency and a lower overpotential for selective reduction of CO2 to CO. These electrocatalysts were synthesized directly on the carbon support by a facile one-pot method using a cysteamine anchoring agent resulting in controlled monodispersed particle sizes. These synthesized Ag/C electrodes showed improved activities, specifically decrease of the overpotential by 300 mV at 1 mA/cm2, and 4-fold enhanced CO Faradaic efficiency at −0.75 V vs RHE with the optimal particle size of 5 nm compared to polycrystalline Ag foil. DFT calculations enlightened that the specific interaction between Ag nanoparticle and the anchoring agents modified the catalyst surface to have a selectively higher affinity to the intermediate COOH over CO, which effectivel...

511 citations

Journal ArticleDOI
TL;DR: This work demonstrates that optimization of the RGO loading and the operation temperature of RGO-SnO2 nanocomposite gas sensors enables highly sensitive and selective detection of breath markers for the diagnosis of diabetes and halitosis.
Abstract: Sensitive detection of acetone and hydrogen sulfide levels in exhaled human breath, serving as breath markers for some diseases such as diabetes and halitosis, may offer useful information for early diagnosis of these diseases. Exhaled breath analyzers using semiconductor metal oxide (SMO) gas sensors have attracted much attention because they offer low cost fabrication, miniaturization, and integration into portable devices for noninvasive medical diagnosis. However, SMO gas sensors often display cross sensitivity to interfering species. Therefore, selective real-time detection of specific disease markers is a major challenge that must be overcome to ensure reliable breath analysis. In this work, we report on highly sensitive and selective acetone and hydrogen sulfide detection achieved by sensitizing electrospun SnO2 nanofibers with reduced graphene oxide (RGO) nanosheets. SnO2 nanofibers mixed with a small amount (0.01 wt %) of RGO nanosheets exhibited sensitive response to hydrogen sulfide (Rair/Rgas ...

341 citations

Journal ArticleDOI
TL;DR: Results show the selectivity of ethylene to methane in O- Cu combination catalysts is influenced by the electrochemical reduction environment related to the mixed valences, which will provide new strategies to improve durability of O-Cu combination catalyststs for C-C coupling products from electrochemical CO2 conversion.
Abstract: Oxygen–Cu (O–Cu) combination catalysts have recently achieved highly improved selectivity for ethylene production from the electrochemical CO2 reduction reaction (CO2RR). In this study, we developed anodized copper (AN-Cu) Cu(OH)2 catalysts by a simple electrochemical synthesis method and achieved ∼40% Faradaic efficiency for ethylene production, and high stability over 40 h. Notably, the initial reduction conditions applied to AN-Cu were critical to achieving selective and stable ethylene production activity from the CO2RR, as the initial reduction condition affects the structures and chemical states, crucial for highly selective and stable ethylene production over methane. A highly negative reduction potential produced a catalyst maintaining long-term stability for the selective production of ethylene over methane, and a small amount of Cu(OH)2 was still observed on the catalyst surface. Meanwhile, when a mild reduction condition was applied to the AN-Cu, the Cu(OH)2 crystal structure and mixed states d...

331 citations

Journal ArticleDOI
TL;DR: The unique morphology, small nanoparticles stacked upon on another, is proposed to promote C-C coupling reaction selectivity from CO2RR by suppressing HER.
Abstract: In this study, we demonstrate that the initial morphology of nanoparticles can be transformed into small fragmented nanoparticles, which were densely contacted to each other, during electrochemical CO2 reduction reaction (CO2RR). Cu-based nanoparticles were directly grown on a carbon support by using cysteamine immobilization agent, and the synthesized nanoparticle catalyst showed increasing activity during initial CO2RR, doubling Faradaic efficiency of C2H4 production from 27% to 57.3%. The increased C2H4 production activity was related to the morphological transformation over reaction time. Twenty nm cubic Cu2O crystalline particles gradually experienced in situ electrochemical fragmentation into 2-4 nm small particles under the negative potential, and the fragmentation was found to be initiated from the surface of the nanocrystal. Compared to Cu@CuO nanoparticle/C or bulk Cu foil, the fragmented Cu-based NP/C catalyst achieved enhanced C2+ production selectivity, accounting 87% of the total CO2RR products, and suppressed H2 production. In-situ X-ray absorption near edge structure studies showed metallic Cu0 state was observed under CO2RR, but the fragmented nanoparticles were more readily reoxidized at open circuit potential inside of the electrolyte, allowing labile Cu states. The unique morphology, small nanoparticles stacked upon on another, is proposed to promote C-C coupling reaction selectivity from CO2RR by suppressing HER.

321 citations

Journal ArticleDOI
TL;DR: In this paper, a hierarchical Bi-dendrite catalyst was proposed for an efficient conversion of CO2 to formate, achieving a high selectivity (∼89% at −0.74 VRHE) and stable performance during long-term operation.
Abstract: Electrochemical CO2 conversion to chemical products is a promising strategy for sustainable industrial development. However, the success of this approach requires an in-depth understanding of catalysis because it involves highly complex multistep reactions. Herein, we suggest a rational design of a hierarchical Bi dendrite catalyst for an efficient conversion of CO2 to formate. A high selectivity (∼89% at −0.74 VRHE) and, more importantly, a stable performance during long-term operation (∼12 h) were achieved with the Bi dendrite. Density functional theory (DFT) is used to investigate three possible reaction pathways in terms of surface intermediate, and the one via *OCOH surface intermediate is calculated to be the most energetically feasible. DFT calculations further elucidate the plane-dependent catalytic activity and conclude that the high-index planes developed on the Bi dendrite are responsible for the sustainable performance of Bi dendrite. We expect that our experimental and theoretical study will ...

230 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: While the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice), and I believe that the Handbook can be useful in those laboratories.
Abstract: There is a special reason for reviewing this book at this time: it is the 50th edition of a compendium that is known and used frequently in most chemical and physical laboratories in many parts of the world. Surely, a publication that has been published for 56 years, withstanding the vagaries of science in this century, must have had something to offer. There is another reason: while the book is a standard fixture in most chemical and physical laboratories, including those in medical centers, it is not as frequently seen in the laboratories of physician's offices (those either in solo or group practice). I believe that the Handbook can be useful in those laboratories. One of the reasons, among others, is that the various basic items of information it offers may be helpful in new tests, either physical or chemical, which are continuously being published. The basic information may relate

2,493 citations

Journal ArticleDOI
TL;DR: A broad and historical view of different aspects and their complex interplay in CO2R catalysis on Cu is taken, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices.
Abstract: To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.

2,055 citations

Journal ArticleDOI
TL;DR: In this paper, a critical review highlights some key factors influencing the efficiency of heterogeneous semiconductors for solar water splitting (i.e. improved charge separation and transfer, promoted optical absorption, optimized band gap position, lowered cost and toxicity, and enhanced stability and water splitting kinetics).
Abstract: There is a growing interest in the conversion of water and solar energy into clean and renewable H2 fuels using earth-abundant materials due to the depletion of fossil fuel and its serious environmental impact. This critical review highlights some key factors influencing the efficiency of heterogeneous semiconductors for solar water splitting (i.e. improved charge separation and transfer, promoted optical absorption, optimized band gap position, lowered cost and toxicity, and enhanced stability and water splitting kinetics). Moreover, different engineering strategies, such as band structure engineering, micro/nano engineering, bionic engineering, co-catalyst engineering, surface/interface engineering of heterogeneous semiconductors are summarized and discussed thoroughly. The synergistic effects of the different engineering strategies, especially for the combination of co-catalyst loading and other strategies seem to be more promising for the development of highly efficient photocatalysts. A thorough understanding of electron and hole transfer thermodynamics and kinetics at the fundamental level is also important for elucidating the key efficiency-limiting step and designing highly efficient solar-to-fuel conversion systems. In this review, we provide not only a summary of the recent progress in the different engineering strategies of heterogeneous semiconductors for solar water splitting, but also some potential opportunities for designing and optimizing solar cells, photocatalysts for the reduction of CO2 and pollutant degradation, and electrocatalysts for water splitting.

1,489 citations

Journal ArticleDOI
TL;DR: In this paper, the atomically dispersed nickel on nitrogenated graphene was identified as an efficient and durable electrocatalyst for CO2 reduction based on operando X-ray absorption and photo-electron spectroscopy measurements, and the monovalent Ni(i) atomic center with a d9 electronic configuration is identified as the catalytically active site.
Abstract: Electrochemical reduction of CO2 to chemical fuel offers a promising strategy for managing the global carbon balance, but presents challenges for chemistry due to the lack of effective electrocatalyst. Here we report atomically dispersed nickel on nitrogenated graphene as an efficient and durable electrocatalyst for CO2 reduction. Based on operando X-ray absorption and photoelectron spectroscopy measurements, the monovalent Ni(i) atomic center with a d9 electronic configuration was identified as the catalytically active site. The single-Ni-atom catalyst exhibits high intrinsic CO2 reduction activity, reaching a specific current of 350 A gcatalyst−1 and turnover frequency of 14,800 h−1 at a mild overpotential of 0.61 V for CO conversion with 97% Faradaic efficiency. The catalyst maintained 98% of its initial activity after 100 h of continuous reaction at CO formation current densities as high as 22 mA cm−2. Electrocatalysts with improved activity and stability for the conversion of CO2 to CO are being sought. Using operando spectroscopies, the authors identify atomically dispersed Ni(i) as the active site in a nitrogenated-graphene-supported catalyst with high intrinsic activity and stability over 100 hours.

1,368 citations

Journal ArticleDOI
TL;DR: In this paper, the authors address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon and find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of flexible membranes.
Abstract: The stability of two-dimensional (2D) layers and membranes is subject of a long standing theoretical debate. According to the so called Mermin-Wagner theorem, long wavelength fluctuations destroy the long-range order for 2D crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be crumpled. These dangerous fluctuations can, however, be suppressed by anharmonic coupling between bending and stretching modes making that a two-dimensional membrane can exist but should present strong height fluctuations. The discovery of graphene, the first truly 2D crystal and the recent experimental observation of ripples in freely hanging graphene makes these issues especially important. Beside the academic interest, understanding the mechanisms of stability of graphene is crucial for understanding electronic transport in this material that is attracting so much interest for its unusual Dirac spectrum and electronic properties. Here we address the nature of these height fluctuations by means of straightforward atomistic Monte Carlo simulations based on a very accurate many-body interatomic potential for carbon. We find that ripples spontaneously appear due to thermal fluctuations with a size distribution peaked around 70 \AA which is compatible with experimental findings (50-100 \AA) but not with the current understanding of stability of flexible membranes. This unexpected result seems to be due to the multiplicity of chemical bonding in carbon.

1,367 citations