scispace - formally typeset
Search or ask a question
Author

Byung-Moon Jun

Bio: Byung-Moon Jun is an academic researcher from University of South Carolina. The author has contributed to research in topics: Membrane & Adsorption. The author has an hindex of 25, co-authored 43 publications receiving 1665 citations. Previous affiliations of Byung-Moon Jun include Ulsan National Institute of Science and Technology & KAERI.

Papers
More filters
Journal ArticleDOI
TL;DR: This review evaluates the use of adsorbents from four major categories: agricultural waste; naturally-occurring soil and mineral deposits; aquatic and terrestrial biomass; and other locally-available waste materials.

490 citations

Journal ArticleDOI
TL;DR: A comprehensive review of recent studies on energy and environmental applications of MXene and MXene-based nanomaterials, including energy conversion and storage, adsorption, membrane, photocatalysis, and antimicrobial, can be found in this paper.
Abstract: Energy and environmental issues presently attract a great deal of scientific attention. Recently, two-dimensional MXenes and MXene-based nanomaterials have attracted increasing interest because of their unique properties (e.g., remarkable safety, a very large interlayer spacing, environmental flexibility, a large surface area, and thermal conductivity). In 2011, multilayered MXenes (Ti3C2Tx, a new family of two-dimensional (2D) materials) produced by etching an A layer from a MAX phase of Ti3AlC2, were first described by researchers at Drexel University. The term “MXene” was coined to distinguish this new family of 2D materials from graphene, and applies to both the original MAX phases and MXenes fabricated from them. We present a comprehensive review of recent studies on energy and environmental applications of MXene and MXene-based nanomaterials, including energy conversion and storage, adsorption, membrane, photocatalysis, and antimicrobial. Future research needs are discussed briefly with current challenges that must be overcome before we completely understand the extraordinary properties of MXene and MXene-based nanomaterials.

343 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive assessment of recent studies on the removal of various contaminants of emerging concern (CECs) with different physicochemical properties by various MOF-NAs under various water quality conditions (e.g., pH, background ions/ionic strength, natural organic matter, and temperature).

270 citations

Journal ArticleDOI
TL;DR: A comprehensive literature review is conducted to summarize the current preparation techniques for MXene-based membranes and their applications, particularly in terms of environmental and industrial applications, and to direct future research by identifying gaps in the present understanding.

132 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive literature review of MOF-based membranes in water purification, and suggest future research trends by identifying insufficiencies of current knowledge.

112 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is emphasized that the facile synthesis of a GO membrane exploiting the ideal properties of inexpensive GO materials offers a myriad of opportunities to modify its physicochemical properties, potentially making the GO membrane a next-generation, cost-effective, and sustainable alternative to the long-existing thin-film composite polyamide membranes for water separation applications.
Abstract: We report a novel procedure to synthesize a new type of water separation membrane using graphene oxide (GO) nanosheets such that water can flow through the nanochannels between GO layers while unwanted solutes are rejected by size exclusion and charge effects. The GO membrane was made via layer-by-layer deposition of GO nanosheets, which were cross-linked by 1,3,5-benzenetricarbonyl trichloride, on a polydopamine-coated polysulfone support. The cross-linking not only provided the stacked GO nanosheets with the necessary stability to overcome their inherent dispensability in water environment but also fine-tuned the charges, functionality, and spacing of the GO nanosheets. We then tested the membranes synthesized with different numbers of GO layers to demonstrate their interesting water separation performance. It was found that the GO membrane flux ranged between 80 and 276 LMH/MPa, roughly 4–10 times higher than that of most commercial nanofiltration membranes. Although the GO membrane in the present deve...

1,224 citations

Journal ArticleDOI
01 Sep 2020-Heliyon
TL;DR: The physiological and biochemical effects of each heavy metal bioaccumulation in humans and the level of gravity and disquieting factor of the disease are shown.

1,185 citations

01 Apr 2016
TL;DR: Heterocyclic pyrrole molecules are in situ aligned and polymerized in the absence of an oxidant between layers of the 2D Ti3C2Tx (MXene), resulting in high volumetric and gravimetric capacitances with capacitance retention of 92% after 25,000 cycles at a 100 mV s(-1) scan rate as discussed by the authors.
Abstract: Heterocyclic pyrrole molecules are in situ aligned and polymerized in the -absence of an oxidant between layers of the 2D Ti3C2Tx (MXene), resulting in high volumetric and gravimetric capacitances with capacitance retention of 92% after 25,000 cycles at a 100 mV s(-1) scan rate.

692 citations

Journal ArticleDOI
TL;DR: This review systematically summarizes the behavior and removal of different antibiotics in various biological treatment systems with discussion on their removal efficiency, removal mechanisms, critical bioreactor operating conditions affecting antibiotics removal, and recent innovative advancements.
Abstract: Antibiotics, the most frequently prescribed drugs of modern medicine, are extensively used for both human and veterinary applications. Antibiotics from different wastewater sources (e.g., municipal, hospitals, animal production, and pharmaceutical industries) ultimately are discharged into wastewater treatment plants. Sorption and biodegradation are the two major removal pathways of antibiotics during biological wastewater treatment processes. This review provides the fundamental insights into sorption mechanisms and biodegradation pathways of different classes of antibiotics with diverse physical-chemical attributes. Important factors affecting sorption and biodegradation behavior of antibiotics are also highlighted. Furthermore, this review also sheds light on the critical role of extracellular polymeric substances on antibiotics adsorption and their removal in engineered biological wastewater treatment systems. Despite major advancements, engineered biological wastewater treatment systems are only moderately effective (48-77%) in the removal of antibiotics. In this review, we systematically summarize the behavior and removal of different antibiotics in various biological treatment systems with discussion on their removal efficiency, removal mechanisms, critical bioreactor operating conditions affecting antibiotics removal, and recent innovative advancements. Besides, relevant background information including antibiotics classification, physical-chemical properties, and their occurrence in the environment from different sources is also briefly covered. This review aims to advance our understanding of the fate of various classes of antibiotics in engineered biological wastewater treatment systems and outlines future research directions.

454 citations

Journal ArticleDOI
TL;DR: Results indicate that incorporation of GO into a PA membrane can effectively enhance its hydrophilicity and consequently improve its flux and antifouling properties and provides an effective way to develop high performance NF membranes with greater stability.
Abstract: Organic–inorganic hybrid materials are considered the most promising candidates in the preparation of nanofiltration (NF) membranes. The incorporation of nano-particles in a polymer matrix has provided a new approach for the preparation of membranes with enhanced permeability, high selectivity and improved anti-fouling properties. In this study, polyamide (PA) nanofiltration (NF) membranes embedded with various graphene oxide (GO) contents to improve the membrane flux and anti-fouling properties are proposed and successfully prepared for desalination applications. The prepared PA/GO membranes exhibited much higher flux than did pristine PA membranes. A twelve-fold increase in water flux, with a negligible change in salt rejection, was observed after incorporating GO (0.2 wt%) in the PA membrane. Addition of GO also provided a significant improvement in the anti-fouling property of the membrane due to an increase in the hydrophilicity of the membrane. These results indicate that incorporation of GO into a PA membrane can effectively enhance its hydrophilicity and consequently improve its flux and antifouling properties. Because no deleterious effect on the performance of the PA membrane was observed from this modification, this concept provides an effective way to develop high performance NF membranes with greater stability.

438 citations