scispace - formally typeset
Search or ask a question
Author

Byung Sun Min

Bio: Byung Sun Min is an academic researcher from The Catholic University of America. The author has contributed to research in topics: Chemistry & Glycoside. The author has an hindex of 43, co-authored 385 publications receiving 7465 citations. Previous affiliations of Byung Sun Min include Catholic University of Daegu & Korea Research Institute of Bioscience and Biotechnology.


Papers
More filters
Journal ArticleDOI
TL;DR: Goenlandicine may be a promising anti-AD agent due to its potent inhibitory activity of both ChEs and beta-amyloids formation, as well as marked ONOO(-) scavenging and good ROS inhibitory capacities.
Abstract: Coptidis Rhizoma and its isolated alkaloids are reported to possess a variety of activities, including neuroprotective and antioxidant effects. Thus, the anti-Alzheimer and antioxidant effects of six protoberberine alkaloids (berberine, palmatine, jateorrhizine, epiberberine, coptisine, and groenlandicine) and one aporphine alkaloid (magnoflorine) from Coptidis Rhizoma were evaluated via beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) assays, along with peroxynitrite (ONOO(-)) scavenging and total reactive oxygen species (ROS) inhibitory assays. Six protoberberine alkaloids exhibited predominant cholinesterases (ChEs) inhibitory effects with IC(50) values ranging between 0.44-1.07 microM for AChE and 3.32-6.84 microM for BChE; only epiberberine (K(i)=10.0) and groenlandicine (K(i)=21.2) exerted good, non-competitive BACE1 inhibitory activities with IC(50) values of 8.55 and 19.68 microM, respectively. In two antioxidant assays, jateorrhizine and groenlandicine exhibited significant ONOO(-) scavenging activities with IC(50) values of 0.78 and 0.84 microM, respectively; coptisine and groenlandicine exhibited moderate total ROS inhibitory activities with IC(50) values of 48.93 and 51.78 microM, respectively. These results indicate that Coptidis Rhizoma alkaloids have a strong potential of inhibition and prevention of Alzheimer's disease (AD) mainly through both ChEs and beta-amyloids pathways, and additionally through antioxidant capacities. In particular, groenlandicine may be a promising anti-AD agent due to its potent inhibitory activity of both ChEs and beta-amyloids formation, as well as marked ONOO(-) scavenging and good ROS inhibitory capacities. As a result, Coptidis Rhizoma and the alkaloids contained therein would clearly have beneficial uses in the development of therapeutic and preventive agents for AD and oxidative stress-related disease.

269 citations

Journal ArticleDOI
TL;DR: Two new lanostane-type triterpenes, lucidumol A and ganoderic acid beta, were isolated from the spores of Ganoderma (G.) lucidum and showed significant anti-human immunodeficiency virus (anti-HIV)-1 protease activity with IC50 values of 20-90 microM.
Abstract: Two new lanostane-type triterpenes, lucidumol A and ganoderic acid beta, were isolated from the spores of Ganoderma (G) lucidum, together with a new natural one and seven that were known The structures of the new triterpenes were determined as (24S)-24,25-dihydroxylanost-8-ene-3,7-dione and 3 beta,7 beta-dihydroxy-11,15-dioxolanosta-8,24(E)-dien-26-oic acid, respectively, by chemical and spectroscopic means The quantitative analyses of 5 fruiting bodies, antlered form and spores of G lucidum were performed by high performance liquid chromatography and demonstrated that ganoderic alcohol and acid contents were quite high in the spore Of the compound isolated, ganoderic acid beta, (24S)-lanosta-7,9(11)-diene-3 beta,24,25-triol (called lucidumol B), ganodermanondiol, ganodermanontriol and ganolucidic acid A showed significant anti-human immunodeficiency virus (anti-HIV)-1 protease activity with IC50 values of 20-90 microM

260 citations

Journal ArticleDOI
TL;DR: Six new highly oxygenated lanostane-type triterpenes were isolated from the spores of Ganoderma lucidum, together with known ganolucidic acid D and ganoderic acid C2, and the cytotoxicity of the compounds was carried out in vitro against Meth-A and LLC tumor cell lines.
Abstract: Six new highly oxygenated lanostane-type triterpenes, called ganoderic acid gamma (1), ganoderic acid delta (2), ganoderic acid epsilon (3), ganoderic acid zeta (4), ganoderic acid eta (5) and ganoderic acid theta (6), were isolated from the spores of Ganoderma lucidum, together with known ganolucidic acid D (7) and ganoderic acid C2 (8). Their structures of the new triterpenes were determined as (23S)-7beta,15alpha,23-trihydroxy-3,11-dioxolanosta-8, 24(E)-diene-26-oic acid (1), (23S)-7alpha,15alpha23-trihydroxy-3,11-dioxolanosta-8, 24(E)-diene-26-oic acid (2), (23S)-3beta3,7beta, 23-trihydroxy-11,15-dioxolanosta-8,24(E)-diene-26-oic acid (3), (23S)-3beta,23-dihydroxy-7,11,15-trioxolanosta-8, 24(E)-diene-26-oic acid (4), (23S)-3beta,7beta,12beta,23-tetrahydroxy-11,15-dioxolanos ta-8,24(E)-diene-26-oic acid (5) and (23S)-3beta,12beta23-trihydroxy-7,11,15-trioxolanosta-8,24(E )-diene-26-oic acid (6), respectively, by chemical and spectroscopic means, which included the determination of a chiral center in the side chain by a modification of Mosher's method. The cytotoxicity of the compounds isolated from the Ganoderma spores was carried out in vitro against Meth-A and LLC tumor cell lines.

227 citations

Journal ArticleDOI
TL;DR: Three new lanostante-type triterpene aldehydes, named lucialdehydes A-C (1-3), were isolated from the fruiting bodies of Ganoderma lucidum and showed cytotoxic effects on tested tumor cells.
Abstract: Three new lanostante-type triterpene aldehydes, named lucialdehydes A-C (1-3), were isolated from the fruiting bodies of Ganoderma lucidum, together with ganodermanonol (4), ganodermadiol (5), ganodermanondiol (6), ganodermanontriol (7), ganoderic acid A (8), ganoderic acid B8 (9), and ganoderic acid C1 (10). The structures of the new triterpenes were determined as (24E)-3 beta-hydroxy-5 alpha-lanosta-7,9(11),24-trien-26-al (1), (24E)-3,7-dioxo-5 alpha-lanosta-8,24-dien-26-al (2), and (24E)-3 beta-hydroxy-7-oxo-5 alpha-lanosta-8,24-dien-26-al (3), respectively, by spectroscopic means. The cytotoxicity of the compounds isolated from the ganoderma mushroom was tested in vitro against Lewis lung carcinoma (LLC), T-47D, Sarcoma 180, and Meth-A tumor cell lines. Lucialdehydes B, C (2, 3), ganodermanonol (4) and ganodermanondiol (6) showed cytotoxic effects on tested tumor cells. Of the compounds, lucialdehyde C (3) exhibited the most potent cytotoxicity against LLC, T-47D, Sarcoma 180, and Meth-A tumor cells with ED(50) values of 10.7, 4.7, 7.1, and 3.8 microg/ml, respectively.

159 citations

Journal ArticleDOI
TL;DR: Results indicate that P. lobata roots and its constituents may be a useful therapeutic and preventive approach to various inflammatory diseases and oxidative stress-related disease.
Abstract: In order to evaluate the anti-inflammatory and antioxidant activities of Pueraria lobata roots and its active components, in vitro inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) protein expression, and tert-butylhydroperoxide (t-BHP)-induced reactive oxygen species (ROS) generation in RAW 264.7 cells, as well as in vitro scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH), peroxynitrite (ONOO(-)), nitric oxide (NO·), superoxide anion (·O(2)(-)) and total ROS, and inhibitory activities against ONOO(-)-mediated tyrosine nitration, were determined. Repeated column chromatography was performed to isolate four known compounds from the anti-inflammatory and antioxidant EtOAc fraction: daidzein; genistein; puerarin; (+)-puerarol B-2-O-glucopyranoside; four known compounds from the anti-inflammatory n-hexane fraction: lupenone; lupeol; puerarol; coumestrol; seven known compounds from the antioxidant n-BuOH fraction: allantoin; 3'-hydroxypuerarin; daidzein 8-C-apiosyl-(1→6)-glucoside; puerarin; genistin; 3'-methoxypuerarin; daidzin. Among these compounds, lupenone and lupeol reduced NO production, as well as iNOS and COX-2 protein levels in LPS-stimulated RAW 264.7 cells. Furthermore, lupeol showed significant inhibitory activity against intracellular ROS generation by t-BHP. Meanwhile, 3'-hydroxypuerarin showed marked ONOO(-), NO·, total ROS scavenging activities, and weak ·O(2)(-) scavenging activity, while 3'-methoxypuerarin showed ONOO(-) scavenging activity and weak NO· and O(2)(-) scavenging activities, suggesting that existence of the 3'-hydroxyl group in puerarin plays an important role in the scavenging of ONOO(-), NO·, and total ROS, as well as inhibiting the ONOO(-)-mediated tyrosine nitration mechanism. These results indicate that P. lobata roots and its constituents may be a useful therapeutic and preventive approach to various inflammatory diseases and oxidative stress-related disease.

127 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
TL;DR: Some of the recent advances in flavonoid research are reviewed and the role of anthocyanins and flavones in providing stable blue flower colours in the angiosperms is outlined.

3,465 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: An overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning.
Abstract: Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer's disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases.

1,660 citations