scispace - formally typeset
Search or ask a question
Author

Byung-Wan Jo

Bio: Byung-Wan Jo is an academic researcher from Hanyang University. The author has contributed to research in topics: Compressive strength & Cement. The author has an hindex of 22, co-authored 99 publications receiving 2360 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the properties of cement mortars with nano-SiO 2 were experimentally studied, and the results showed that the compressive strength of mortars containing nano SiO 2 particles was significantly higher than those of those containing silica fume at 7 and 28 days.

867 citations

Journal ArticleDOI
TL;DR: In this article, the compressive strengths of concrete bricks with nano-SiO 2 particles (NS) were evaluated at various water-cementitious material ratios (w/cm).
Abstract: The amorphous or glassy silica, which is the major component of a pozzolan, reacts with calcium hydroxide formed from calcium silicate hydration. The rate of the pozzolanic reaction is proportional to the amount of surface area available for reaction. Therefore, it is plausible to add nano-SiO 2 particles (NS) to make high-performance concrete. The compressive strengths of cement mortar were evaluated at various water-cementitious material ratios (w/cm). Five different w/cm were used, including 0.23, 0.25, 0.32, 0.35, and 0.48 and four contents of NS, 3, 6, 9, and 12% by weight of cement. The compressive strengths of cement mortar with the addition of silica fume were also evaluated at a w/cm of 0.35 to compare with mortar containing nano-SiO 2 particles and three contents of silica fume were: 5, 10, and 15% by weight of cement. The experimental results show that the compressive strengths of mortars with NS were all higher than those of mortars containing silica fume at 7 and 28 days. It was demonstrated that the nano-particles were more valuable in enhancing strength than silica fume. This paper also analyzes some available examinations to monitor the hydration progress continuously, such as SEM observation, residual quantity test for Ca(OH) 2 , and the rate of heat evolution. The results of the examinations indicate that the SiO 2 in nano scale behave not only as a filler to improve the microstructure, but also as an activator to promote pozzolanic reactions.

216 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the mechanical properties of polymer concrete, in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates.

150 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the mechanical and thermal properties of MMT-UP nanocomposites, and those of polymer concretes using these nano-composites.

126 citations

Journal ArticleDOI
TL;DR: In this article, the compressive strength of cement mortar with the addition of silica fume was evaluated at various water-cementitious ratio, including 0.23, 0.25, 0, 32, 35, and 0.48, and four contents of nano-SiO2 particles, 3, 6, 9, and 12%.
Abstract: The nano scale of particles can result in dramatically improved or different properties from conventional grain-size materials of the same chemical composition. Therefore, it is practical to add nano-silica in particle form with 99.9% of SiO2 in nano scale to improve the characteristics of cement mortar. The compressive strengths of cement mortar were evaluated at various water-cementitious ratio. Five different water-cementitious ratios were used including, 0.23, 0.25, 0.32, 0.35, and 0.48 and four contents of nano-SiO2 particles, 3%, 6%, 9%, and 12% by weight of cement. The compressive strength of cement mortar with the addition of silica fume were also evaluated at w/cm ratio of 0.48 to compare with mortar containing nano-SiO2 particles and three contents of silica fume were: 5%, 10% and 15% by weight of cement. The experimental results show that the compressive strengths of mortars with nano-SiO2 particles were all higher than those of mortars containing silica fume at 7 and 28 days. It was demonstrated that the nano-particles were more valuable in enhancing strength than silica fume. This paper also analyzed some available examinations to monitor the hydration progress continuously, such as SEM observation, residual quantity test for Ca(OH)2 and the rate of heat evolution. The results of the examinations indicate that the SiO2 in nano scale behave not only as a filler to improve the microstructure, but also as an activator to promote pozzolanic reactions.

104 citations


Cited by
More filters
01 Jan 2016
TL;DR: The properties of concrete is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading properties of concrete. As you may know, people have look hundreds times for their chosen readings like this properties of concrete, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they juggled with some malicious virus inside their computer. properties of concrete is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the properties of concrete is universally compatible with any devices to read.

1,701 citations

Journal ArticleDOI
TL;DR: In this paper, the state of the field of nanotechnology in concrete is reviewed and the impact of recent advances in instrumentation and computational materials science and their use in concrete research is discussed.

1,385 citations

Journal ArticleDOI
TL;DR: The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.

804 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the science behind the synthesis and properties of the ODNS rather than the device fabrication, and discuss current research related to environment and toxicology effects and current challenges in this rapidly evolving field.

579 citations

Journal ArticleDOI
TL;DR: Graphene oxide (GO) is the product of chemical exfoliation of graphite and is a potential candidate for use as nanoreinforcements in cement-based materials as discussed by the authors.
Abstract: Graphene oxide (GO) is the product of chemical exfoliation of graphite. Due to its good dispersibility in water, high aspect ratio and excellent mechanical properties, GO is a potential candidate for use as nanoreinforcements in cement-based materials. In this paper, GO was used to enhance the mechanical properties of ordinary Portland cement paste. The introduction of 0.05 wt% GO can increase the GO-cement composite compressive strength by 15-33% and the flexural strength by 41-59%, respectively. Scanning electron microscope imaging of the GO-cement composite shows the high crack tortuosity, indicating that the two-dimensional GO sheet may form a barrier to crack propagation. Consequently, the GO-cement composite shows a broader stress-strain curve within the post-peak zone, leading to a less sudden failure. The addition of GO also increases the surface area of the GO-cement composite. This is attributed to increasing the production of calcium silicate hydrate. The results obtained in this investigation suggest that GO has potential for being used as nano-reinforcements in cement-based composite materials.

574 citations