scispace - formally typeset
Search or ask a question
Author

C. Barache

Bio: C. Barache is an academic researcher from University of Paris. The author has contributed to research in topics: Astrometry & Parallax. The author has an hindex of 11, co-authored 13 publications receiving 2268 citations.

Papers
More filters
Journal ArticleDOI
Lennart Lindegren1, Jose M Hernandez2, Alex Bombrun, Sergei A. Klioner3, Ulrich Bastian4, M. Ramos-Lerate, A. de Torres, H. Steidelmüller3, C.A. Stephenson5, David Hobbs1, U. Lammers2, M. Biermann4, R. Geyer3, Thomas Hilger3, Daniel Michalik1, U. Stampa4, Paul J. McMillan1, J. Castañeda6, M. Clotet6, G. Comoretto5, Michael Davidson7, C. Fabricius6, G. Gracia, Nigel Hambly7, A. Hutton, A. Mora, Jordi Portell6, F. van Leeuwen8, U. Abbas, A. Abreu, Martin Altmann4, Martin Altmann9, Alexandre Humberto Andrei, E. Anglada10, L. Balaguer-Núñez6, C. Barache9, Ugo Becciani11, Stefano Bertone9, Stefano Bertone12, Luciana Bianchi, S. Bouquillon9, Geraldine Bourda13, T. Brüsemeister4, Beatrice Bucciarelli, D. Busonero, R. Buzzi, Rossella Cancelliere14, T. Carlucci9, Patrick Charlot13, N. Cheek10, Mariateresa Crosta, C. Crowley, J. H. J. de Bruijne15, F. de Felice16, R. Drimmel, P. Esquej, Agnes Fienga17, E. Fraile, Mario Gai, N. Garralda6, J.J. González-Vidal6, Raphael Guerra2, M. Hauser4, M. Hauser18, Werner Hofmann4, B. Holl19, Stefan Jordan4, Mario G. Lattanzi, H. Lenhardt4, S. Liao20, E. Licata, Tim Lister21, W. Löffler4, Jon Marchant22, J. M. Martín-Fleitas, R. Messineo23, Francois Mignard17, Roberto Morbidelli, E. Poggio14, Alberto Riva, Nicholas Rowell7, E. Salguero, M. Sarasso, Eva Sciacca11, H. I. Siddiqui5, Richard L. Smart, Alessandro Spagna, Iain A. Steele22, F. Taris9, J. Torra6, A. van Elteren24, W. van Reeven, Alberto Vecchiato 
TL;DR: In this article, the authors describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these results performed within the ASTR task.
Abstract: Context. Gaia Data Release 2 (Gaia DR2) contains results for 1693 million sources in the magnitude range 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 22 months of its operational phase.Aims. We describe the input data, models, and processing used for the astrometric content of Gaia DR2, and the validation of these resultsperformed within the astrometry task.Methods. Some 320 billion centroid positions from the pre-processed astrometric CCD observations were used to estimate the five astrometric parameters (positions, parallaxes, and proper motions) for 1332 million sources, and approximate positions at the reference epoch J2015.5 for an additional 361 million mostly faint sources. These data were calculated in two steps. First, the satellite attitude and the astrometric calibration parameters of the CCDs were obtained in an astrometric global iterative solution for 16 million selected sources, using about 1% of the input data. This primary solution was tied to the extragalactic International Celestial Reference System (ICRS) by means of quasars. The resulting attitude and calibration were then used to calculate the astrometric parameters of all the sources. Special validation solutions were used to characterise the random and systematic errors in parallax and proper motion.Results. For the sources with five-parameter astrometric solutions, the median uncertainty in parallax and position at the reference epoch J2015.5 is about 0.04 mas for bright (G = 17 mag, and 0.7 masat G = 20 mag. In the proper motion components the corresponding uncertainties are 0.05, 0.2, and 1.2 mas yr−1 , respectively.The optical reference frame defined by Gaia DR2 is aligned with ICRS and is non-rotating with respect to the quasars to within 0.15 mas yr−1 . From the quasars and validation solutions we estimate that systematics in the parallaxes depending on position, magnitude, and colour are generally below 0.1 mas, but the parallaxes are on the whole too small by about 0.03 mas. Significant spatial correlations of up to 0.04 mas in parallax and 0.07 mas yr−1 in proper motion are seen on small ( DR2 astrometry are given in the appendices.

1,836 citations

Journal ArticleDOI
Federica Spoto1, Federica Spoto2, Paolo Tanga2, Francois Mignard2  +498 moreInstitutions (86)
TL;DR: In this paper, the authors describe the processing of the Gaia DR2 data, and describe the criteria used to select the sample published in Gaia DR 2, and explore the data set to assess its quality.
Abstract: Context. The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center repository. Positions are provided for each Gaia observation at CCD level. As additional information, complementary to astrometry, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations.Aims. We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality.Methods. To exploit the main data product for the solar system in Gaia DR2, which is the epoch astrometry of asteroids, it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The role of both random and systematic errors is described. The distribution of residuals allowed us to identify possible contaminants in the data set (such as stars). Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP).Results. The overall astrometric performance is close to the expectations, with an optimal range of brightness G ~ 12 − 17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G ~ 12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons to the archive data and by preliminary tests on the detection of subtle non-gravitational effects.

584 citations

Journal ArticleDOI
Lennart Lindegren1, Sergei A. Klioner2, Jose M Hernandez3, Alex Bombrun3, M. Ramos-Lerate3, H. Steidelmüller2, Ulrich Bastian4, M. Biermann4, A. de Torres3, E. Gerlach2, R. Geyer2, Thomas Hilger2, David Hobbs1, U. Lammers3, Paul J. McMillan1, C.A. Stephenson3, J. Castañeda5, Michael Davidson6, C. Fabricius5, G. Gracia-Abril4, Jordi Portell5, Nicholas Rowell6, David Teyssier3, F. Torra5, S. Bartolomé5, M. Clotet5, N. Garralda5, J.J. González-Vidal5, J. Torra5, U. Abbas7, Martin Altmann8, Martin Altmann4, E. Anglada Varela3, L. Balaguer-Núñez5, Zoltan Balog4, Zoltan Balog9, C. Barache8, Ugo Becciani7, M. Bernet5, Stefano Bertone10, Stefano Bertone7, Stefano Bertone11, Luciana Bianchi, S. Bouquillon8, Anthony G. A. Brown12, Beatrice Bucciarelli7, D. Busonero7, A. G. Butkevich7, R. Buzzi7, Rossella Cancelliere13, T. Carlucci8, Patrick Charlot14, Maria-Rosa L. Cioni15, Mariateresa Crosta7, C. Crowley3, E. F. del Peloso4, E. del Pozo3, Ronald Drimmel7, P. Esquej3, Agnes Fienga14, Agnes Fienga8, E. Fraile3, Mario Gai7, M. Garcia-Reinaldos3, Raphael Guerra3, Nigel Hambly6, M. Hauser9, K. Janßen15, Stefan Jordan4, Z. Kostrzewa-Rutkowska16, Z. Kostrzewa-Rutkowska12, Massimiliano Lattanzi13, Massimiliano Lattanzi7, S. Liao7, E. Licata7, Tim Lister17, W. Löffler4, Jon Marchant18, A. Masip5, Francois Mignard14, Alexey Mints15, D. Molina5, Alcione Mora3, Roberto Morbidelli7, C. P. Murphy3, C. Pagani19, Pasquale Panuzzo8, X. Peñalosa Esteller5, E. Poggio7, P. Re Fiorentin7, Alberto Riva7, A. Sagristà Sellés4, V. Sanchez Gimenez5, M. Sarasso7, Eva Sciacca7, H. I. Siddiqui20, Richard L. Smart7, D. Souami21, D. Souami8, Alessandro Spagna7, Iain A. Steele18, F. Taris8, E. Utrilla3, W. van Reeven3, Alberto Vecchiato7 
TL;DR: Gaia Early Data Release 3 (Gaia EDR3) as mentioned in this paper contains results for 1.812 billion sources in the magnitude range G = 3-21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase.
Abstract: Context. Gaia Early Data Release 3 (Gaia EDR3) contains results for 1.812 billion sources in the magnitude range G = 3–21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase.Aims. We describe the input data, the models, and the processing used for the astrometric content of Gaia EDR3, as well as the validation of these results performed within the astrometry task.Methods. The processing broadly followed the same procedures as for Gaia DR2, but with significant improvements to the modelling of observations. For the first time in the Gaia data processing, colour-dependent calibrations of the line- and point-spread functions have been used for sources with well-determined colours from DR2. In the astrometric processing these sources obtained five-parameter solutions, whereas other sources were processed using a special calibration that allowed a pseudocolour to be estimated as the sixth astrometric parameter. Compared with DR2, the astrometric calibration models have been extended, and the spin-related distortion model includes a self-consistent determination of basic-angle variations, improving the global parallax zero point.Results. Gaia EDR3 gives full astrometric data (positions at epoch J2016.0, parallaxes, and proper motions) for 1.468 billion sources (585 millionwith five-parameter solutions, 882 million with six parameters), and mean positions at J2016.0 for an additional 344 million.Solutions with five parameters are generally more accurate than six-parameter solutions, and are available for 93% of the sources brighter than the 17th magnitude. The median uncertainty in parallax and annual proper motion is 0.02–0.03 mas at magnitude G = 9–14, and around 0.5 mas at G = 20. Extensive characterisation of the statistical properties of the solutions is provided, including the estimated angular power spectrum of parallax bias from the quasars.

475 citations

Journal ArticleDOI
Lennart Lindegren1, Sergei A. Klioner2, Jose M Hernandez3, Alex Bombrun3, M. Ramos-Lerate3, H. Steidelmüller2, Ulrich Bastian4, M. Biermann4, A. de Torres3, E. Gerlach2, R. Geyer2, Thomas Hilger2, David Hobbs1, U. Lammers3, Paul J. McMillan1, C.A. Stephenson3, J. Castañeda5, Michael Davidson6, C. Fabricius5, G. Gracia-Abril4, Jordi Portell5, Nicholas Rowell6, David Teyssier3, F. Torra5, S. Bartolomé5, M. Clotet5, N. Garralda5, J.J. González-Vidal5, J. Torra5, U. Abbas7, Martin Altmann4, Martin Altmann8, E. Anglada Varela3, L. Balaguer-Núñez5, Zoltan Balog4, Zoltan Balog9, C. Barache8, Ugo Becciani7, M. Bernet5, Stefano Bertone10, Stefano Bertone7, Stefano Bertone11, Luciana Bianchi, S. Bouquillon8, Anthony G. A. Brown12, Beatrice Bucciarelli7, D. Busonero7, A. G. Butkevich7, R. Buzzi7, Rossella Cancelliere13, T. Carlucci8, Patrick Charlot14, Maria-Rosa L. Cioni15, Mariateresa Crosta7, C. Crowley3, E. F. del Peloso4, E. del Pozo3, Ronald Drimmel7, P. Esquej3, Agnes Fienga8, Agnes Fienga14, E. Fraile3, Mario Gai7, M. Garcia-Reinaldos3, Raphael Guerra3, Nigel Hambly6, M. Hauser9, K. Janßen15, Stefan Jordan4, Z. Kostrzewa-Rutkowska12, Z. Kostrzewa-Rutkowska16, Massimiliano Lattanzi7, Massimiliano Lattanzi13, S. Liao7, E. Licata7, Tim Lister17, W. Löffler4, Jon Marchant18, A. Masip5, Francois Mignard14, Alexey Mints15, D. Molina5, Alcione Mora3, Roberto Morbidelli7, C. P. Murphy3, C. Pagani19, Pasquale Panuzzo8, X. Peñalosa Esteller5, E. Poggio7, P. Re Fiorentin7, Alberto Riva7, A. Sagristà Sellés4, V. Sanchez Gimenez5, M. Sarasso7, Eva Sciacca7, H. I. Siddiqui20, Richard L. Smart7, D. Souami21, D. Souami8, Alessandro Spagna7, Iain A. Steele18, F. Taris8, E. Utrilla3, W. van Reeven3, Alberto Vecchiato7 
TL;DR: Gaia Early Data Release 3 (Gaia EDR3) as discussed by the authors contains results for 1.812 billion sources in the magnitude range G = 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase.
Abstract: Gaia Early Data Release 3 (Gaia EDR3) contains results for 1.812 billion sources in the magnitude range G = 3 to 21 based on observations collected by the European Space Agency Gaia satellite during the first 34 months of its operational phase. We describe the input data, the models, and the processing used for the astrometric content of Gaia EDR3, as well as the validation of these results performed within the astrometry task. The processing broadly followed the same procedures as for Gaia DR2, but with significant improvements to the modelling of observations. For the first time in the Gaia data processing, colour-dependent calibrations of the line- and point-spread functions have been used for sources with well-determined colours from DR2. In the astrometric processing these sources obtained five-parameter solutions, whereas other sources were processed using a special calibration that allowed a pseudocolour to be estimated as the sixth astrometric parameter. Compared with DR2, the astrometric calibration models have been extended, and the spin-related distortion model includes a self-consistent determination of basic-angle variations, improving the global parallax zero point. Gaia EDR3 gives full astrometric data (positions at epoch J2016.0, parallaxes, and proper motions) for 1.468 billion sources (585 million with five-parameter solutions, 882 million with six parameters), and mean positions at J2016.0 for an additional 344 million. Solutions with five parameters are generally more accurate than six-parameter solutions, and are available for 93% of the sources brighter than G = 17 mag. The median uncertainty in parallax and annual proper motion is 0.02-0.03 mas at magnitude G = 9 to 14, and around 0.5 mas at G = 20. Extensive characterisation of the statistical properties of the solutions is provided, including the estimated angular power spectrum of parallax bias from the quasars.

428 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the validation results in terms of completeness, accuracy, and precision for the Gaia EDR3 data and provide recommendations for the use of the catalogue data.
Abstract: The third Gaia data release is published in two stages. The early part, Gaia EDR3, gives very precise astrometric and photometric properties for nearly two billion sources together with seven million radial velocities from Gaia DR2. The full release, Gaia DR3, will add radial velocities, spectra, light curves, and astrophysical parameters for a large subset of the sources, as well as orbits for solar system objects. Before the publication of the catalogue, many different data items have undergone dedicated validation processes. The goal of this paper is to describe the validation results in terms of completeness, accuracy, and precision for the Gaia EDR3 data and to provide recommendations for the use of the catalogue data. The validation processes include a systematic analysis of the catalogue contents to detect anomalies, either individual errors or statistical properties, using statistical analysis and comparisons to the previous release as well as to external data and to models. Gaia EDR3 represents a major step forward, compared to Gaia DR2, in terms of precision, accuracy, and completeness for both astrometry and photometry. We provide recommendations for dealing with issues related to the parallax zero point, negative parallaxes, photometry for faint sources, and the quality indicators.

161 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.

8,308 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a weak distance prior that varies smoothly as a function of Galactic longitude and latitude according to a Galaxy model to infer distances to essentially all 1.33 billion stars with parallaxes published in the second Gaia data release.
Abstract: For the vast majority of stars in the second Gaia data release, reliable distances cannot be obtained by inverting the parallax. A correct inference procedure must instead be used to account for the nonlinearity of the transformation and the asymmetry of the resulting probability distribution. Here we infer distances to essentially all 1.33 billion stars with parallaxes published in the second \gaia\ data release. This is done using a weak distance prior that varies smoothly as a function of Galactic longitude and latitude according to a Galaxy model. The irreducible uncertainty in the distance estimate is characterized by the lower and upper bounds of an asymmetric confidence interval. Although more precise distances can be estimated for a subset of the stars using additional data (such as photometry), our goal is to provide purely geometric distance estimates, independent of assumptions about the physical properties of, or interstellar extinction towards, individual stars. We analyse the characteristics of the catalogue and validate it using clusters. The catalogue can be queried on the Gaia archive using ADQL at this http URL and downloaded from this http URL .

1,715 citations

Journal ArticleDOI
Željko Ivezić1, Steven M. Kahn2, J. Anthony Tyson3, Bob Abel4  +332 moreInstitutions (55)
TL;DR: The Large Synoptic Survey Telescope (LSST) as discussed by the authors is a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile.
Abstract: We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way. LSST will be a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2 field of view, a 3.2-gigapixel camera, and six filters (ugrizy) covering the wavelength range 320–1050 nm. The project is in the construction phase and will begin regular survey operations by 2022. About 90% of the observing time will be devoted to a deep-wide-fast survey mode that will uniformly observe a 18,000 deg2 region about 800 times (summed over all six bands) during the anticipated 10 yr of operations and will yield a co-added map to r ~ 27.5. These data will result in databases including about 32 trillion observations of 20 billion galaxies and a similar number of stars, and they will serve the majority of the primary science programs. The remaining 10% of the observing time will be allocated to special projects such as Very Deep and Very Fast time domain surveys, whose details are currently under discussion. We illustrate how the LSST science drivers led to these choices of system parameters, and we describe the expected data products and their characteristics.

921 citations

Journal ArticleDOI
C. Babusiaux1, F. van Leeuwen1, M. A. Barstow1, Carme Jordi1  +448 moreInstitutions (2)
TL;DR: Gaia Data Release 2 provides high-precision astrometry and three-band photometry for about 1.3 billion sources over the full sky as mentioned in this paper, which is unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases.
Abstract: Context. Gaia Data Release 2 provides high-precision astrometry and three-band photometry for about 1.3 billion sources over the full sky. The precision, accuracy, and homogeneity of both astrometry and photometry are unprecedented. Aims. We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples. Methods. We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects. Results. The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics. Conclusions. Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies.

733 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the photometric content of the second data release of the Gaia project (Gaia DR2) and its validation along with the quality of the data.
Abstract: Aims. We describe the photometric content of the second data release of the Gaia project (Gaia DR2) and its validation along with the quality of the data.Methods. The validation was mainly carried out using an internal analysis of the photometry. External comparisons were also made, but were limited by the precision and systematics that may be present in the external catalogues used.Results. In addition to the photometric quality assessment, we present the best estimates of the three photometric passbands. Various colour-colour transformations are also derived to enable the users to convert between the Gaia and commonly used passbands.Conclusions. The internal analysis of the data shows that the photometric calibrations can reach a precision as low as 2 mmag on individual CCD measurements. Other tests show that systematic effects are present in the data at the 10 mmag level.

715 citations