scispace - formally typeset
Search or ask a question
Author

C. Bruemmer

Bio: C. Bruemmer is an academic researcher from English Nature. The author has contributed to research in topics: Sciurus & Sciurus carolinensis. The author has an hindex of 2, co-authored 2 publications receiving 183 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Analysis of the incidence of disease and changes in distribution of the two species in Cumbria, from 1993 to 2003 and the predictions of an individual-based (IB) spatially explicit disease model simulating the dynamics of both squirrel species and SQPV in the landscape show grey squirrels increased whilst red squirrels declined.
Abstract: Red squirrels are declining in the United Kingdom. Competition from, and squirrel poxvirus (SQPV) disease carried by, grey squirrels are assumed to be determining the decline. We analyse the incidence of disease and changes in distribution of the two species in Cumbria, from 1993 to 2003 and compare these to the predictions of an individual-based (IB) spatially explicit disease model simulating the dynamics of both squirrel species and SQPV in the landscape. Grey squirrels increased whilst red squirrels declined over 10 years. The incidence of disease in red squirrels was related to the time since grey squirrels arrived in the landscape. Analysis of rates of decline in red squirrel populations in other areas showed that declines are 17–25 times higher in regions where SQPV is present in grey squirrel populations than in those where it is not. The IB model predicted spatial overlap of 3–4 years between the species that was also observed in the field. The model predictions matched the observed data best when contact rates and rates of infection between the two species were low. The model predicted that a grey squirrel population control of >60% effective kill was needed to stop the decline in red squirrel populations in Cumbria.

153 citations

Journal ArticleDOI
TL;DR: It is concluded that the conservation of red squirrels will depend on minimising contact between red and grey squirrel populations, and it is advocated monitoring grey squirrels in corridors within buffer zones around refuge areas, and removing them when detected.

45 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The authors' ecological understanding of wildlife infectious diseases from the individual host to the ecosystem scale is reviewed, highlighting where conceptual thinking lacks verification, discussing difficulties and challenges, and offering potential future research directions.
Abstract: 1. We review our ecological understanding of wildlife infectious diseases from the individual host to the ecosystem scale, highlighting where conceptual thinking lacks verification, discussing difficulties and challenges, and offering potential future research directions. 2. New molecular approaches hold potential to increase our understanding of parasite interactions within hosts. Also, advances in our knowledge of immune systems makes immunological parameters viable measures of parasite exposure, and useful tools for improving our understanding of causal mechanisms. 3. Studies of transmission dynamics have revealed the importance of heterogeneity in host behaviour and physiology, and of contact processes operating at different spatial and temporal scales. An important future challenge is to determine the key transmission mechanisms maintaining the persistence of different types of diseases in the wild. 4. Regulation of host populations is too complex to consider parasite effects in isolation from other factors. One solution is to seek a unified understanding of the conditions under which (and the ecological rules determining when) population scale impacts of parasites can occur. 5. Good evidence now shows that both direct effects of parasites, and trait mediated indirect effects, frequently mediate the success of invasive species and their impacts on recipient communities. A wider exploration of these effects is now needed. 6. At the ecosystem scale, research is needed to characterize the circumstances and conditions under which both fluxes in parasite biomass, and trait mediated effects, are significant in ecosystem processes, and to demonstrate that parasites do indeed increase 'ecosystem health'. 7. There is a general need for more empirical testing of predictions and subsequent development of theory in the classic research cycle. Experimental field studies, meta-analyses, the collection and analysis of long-term data sets, and data constrained modelling, will all be key to advancing our understanding. 8. Finally, we are only now beginning to understand the importance of cross-scale interactions associated with parasitism. Such interactions may offer key insights into bigger picture questions such as when and how different regulatory factors are important, when disease can cause species extinctions, and what characteristics are indicative of functionally resilient ecosystems.

393 citations

Journal ArticleDOI
TL;DR: The life-history traits that cause some hosts to be widespread and resilient might be correlated with those that promote infection and transmission by some pathogens, supporting the notion that the dilution effect might be widespread among disease systems.
Abstract: The dynamics of infectious diseases can be affected by genetic diversity within host populations, species diversity within host communities, and diversity among communities. In principle, diversity can either increase or decrease pathogen transmission and disease risk. Theoretical models and laboratory experiments have demonstrated that a dilution effect (decreased disease risk with increasing diversity) can occur under a wide range of conditions. Field studies of plants, aquatic invertebrates, amphibians, birds, and mammals demonstrate that the phenomenon indeed does occur in many natural systems. A dilution effect is expected when (a) hosts differ in quality for pathogens or vectors; (b) higher quality hosts tend to occur in species-poor communities, whereas lower quality hosts tend to occur in more diverse communities; and (c) lower quality hosts regulate abundance of high-quality hosts or of vectors, or reduce encounter rates between these hosts and pathogens or vectors. Although these conditions characterize many disease systems, our ability to predict when and where the dilution effect occurs remains poor. The life-history traits that cause some hosts to be widespread and resilient might be correlated with those that promote infection and transmission by some pathogens, supporting the notion that the dilution effect might be widespread among disease systems. Criticisms of the dilution effect have focused on whether species richness or species composition (both being metrics of biodiversity) drives disease risk. It is well established, however, that changes in species composition correlate with changes in species richness, and this correlation could explain why the dilution effect appears to be a general phenomenon.

366 citations

Journal ArticleDOI
TL;DR: In this article, the authors define co-introduced parasites as those that have been transported with an alien host to a new locality, outside of their natural range, and co-invading parasites (such as helminths) as those which have been cointroduced and then spread to new, native hosts.
Abstract: We define co-introduced parasites as those which have been transported with an alien host to a new locality, outside of their natural range, and co-invading parasites as those which have been co-introduced and then spread to new, native hosts. Of 98 published studies of co-introductions, over 50% of hosts were freshwater fishes and 49% of parasites were helminths. Although we would expect parasites with simple, direct life cycles to be much more likely to be introduced and establish in a new locality, a substantial proportion (36%) of co-introductions were of parasites with an indirect life cycle. Seventy-eight per cent of co-introduced parasites were found in native host species and can therefore be classed as co-invaders. Host switching was equally common among parasites with direct and indirect life cycles. The magnitude of the threat posed to native species by co-invaders will depend, among other things, on parasite virulence. In 16 cases where co-introduced parasites have switched to native hosts and information was available on relative virulence, 14 (85%) were more virulent in native hosts than in the co-introduced alien host. We argue that this does not necessarily support the naive host theory that co-invading parasites will have greater pathogenic effects in native hosts with which they have no coevolutionary history, but may instead be a consequence of the greater likelihood for parasites with lower virulence in their natural host to be co-introduced.

271 citations

Journal ArticleDOI
TL;DR: It is recognized that parasites influence species coexistence and extirpation by altering competition, predation, and herbivory, and that these effects can, in turn, influence ecosystem properties.
Abstract: Community ecologists generally recognize the importance of species – such as pollinators – that have clear positive effects within ecosystems. However, parasites – usually regarded in terms of their detrimental effects on the individuals they infect – can also have positive impacts on other species in the community. We now recognize that parasites influence species coexistence and extirpation by altering competition, predation, and herbivory, and that these effects can, in turn, influence ecosystem properties. Parasites and pathogens act as ecosystem engineers, alter energy budgets and nutrient cycling, and influence biodiversity. Equally, because ecosystem properties – such as biodiversity – affect parasite populations, there is the potential for feedback between parasitism and ecosystem states. Using examples from animal and plant systems, we examine this potential bidirectional interdependence and challenge the conventional wisdom that parasites have only negative or inconsequential impacts on ecological communities.

219 citations

Journal ArticleDOI
TL;DR: The biology of poxviruses is reviewed with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poXv virus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence.

213 citations