scispace - formally typeset
Search or ask a question
Author

C.C. Kok

Other affiliations: Curtin University
Bio: C.C. Kok is an academic researcher from University of Western Australia. The author has contributed to research in topics: Inclusion body myositis & Haplotype. The author has an hindex of 4, co-authored 5 publications receiving 630 citations. Previous affiliations of C.C. Kok include Curtin University.

Papers
More filters
Journal ArticleDOI
TL;DR: Several candidate genes in the central MHC have the potential to modulate immune or inflammatory responses in an antigen‐independent manner, as is seen in studies of cultured cells from healthy carriers of the 8.1 AH.
Abstract: An individual's major histocompatibility complex (MHC) ancestral haplotype (AH) is the clearest single determinant of susceptibility to MHC associated immunopathological disease, as it defines the alleles carried at all loci in the MHC. However, the direct effects of any of the 150-200 genes that constitute the MHC are difficult to determine since recombination only occurs at defined hotspots. This review concerns the 8.1 AH (HLA-A1, C7, B8, C4AQ0, C4B1, DR3, DQ2), which is carried by most Caucasians with HLA-B8. It is associated with accelerated human immunodeficiency virus (HIV) disease, and susceptibility to insulin-dependent diabetes mellitus (IDDM), systemic lupus erythematosus, dermatitis herpetiformis, common variable immunodeficiency and IgA deficiency, myasthenia gravis and several other conditions. We have mapped susceptibility genes for HIV, IDDM and myasthenia gravis to the central MHC between HLA-B and the tumour necrosis factor or complement genes. Here we consider which of the remaining 8.1-associated diseases are more closely associated with HLA-DR3 and/or DQ2. Several candidate genes in the central MHC have the potential to modulate immune or inflammatory responses in an antigen-independent manner, as is seen in studies of cultured cells from healthy carriers of the 8.1 AH. Hence these genes may act as a common co-factor in the diverse immunopathological conditions associated with the 8.1 AH.

526 citations

Journal ArticleDOI
TL;DR: Among HLA-DR3-positive patients and controls, carriage of HLA -DR3 without microsatellite and single-nucleotide polymorphism alleles of the 8.1AH was marginally less common in patients, further arguing against Hla-DRB1 as the direct cause of susceptibility.
Abstract: Previous studies of sporadic inclusion body myositis (sIBM) have shown a strong association with HLA-DR3 and other components of the 8.1 ancestral haplotype (AH) (HLA-A1, B8, DR3), where the susceptibility locus has been mapped to the central major histocompatibility complex (MHC) region between HLA-DR and C4. Here, the association with HLA-DR3 and other genes in the central MHC and class II region was further investigated in a group of 42 sIBM patients and in an ethnically similar control group (n = 214), using single-nucleotide polymorphisms and microsatellite screening. HLA-DR3 (marking DRB1*0301 in Caucasians) was associated with sIBM (Fisher's test). However, among HLA-DR3-positive patients and controls, carriage of HLA-DR3 without microsatellite and single-nucleotide polymorphism alleles of the 8.1AH (HLA-A1, B8, DRB3*0101, DRB1*0301, DQB1*0201) was marginally less common in patients. Patients showed no increase in carriage of the 18.2AH (HLA-A30, B18, DRB3*0202, DRB1*0301, DQB1*0201) or HLA-DR3 without the central MHC of the 8.1AH, further arguing against HLA-DRB1 as the direct cause of susceptibility. Genes between HLA-DRB1 and HOX12 require further investigation. BTL-II lies in this region and is expressed in muscle. Carriage of allele 2 (exon 6) was more common in patients. BTL-II(E6)*2 is characteristic of the 35.2AH (HLA-A3, B35, DRB1*01) in Caucasians and HLA-DR1, BTL-II(E6)*2, HOX12*2, RAGE*2 was carried by several patients. The 8.1AH and 35.2AH may confer susceptibility to sIBM independently or share a critical allele.

73 citations

Journal ArticleDOI
TL;DR: The ancestral haplotype (AH) concept and historical recombinations are taken advantage to map for a possible susceptibility gene(s) in the MHC in the region between HLA-DR and C4.
Abstract: Inclusion body myositis (IBM) is a form of idiopathic inflammatory myopathy of unknown aetiology. A strong association with HLA class II (HLA-DR3) suggested a role for genes in the human major histocompatibility complex (MHC) in the predisposition to this disease. In this study, we have taken advantage of the ancestral haplotype (AH) concept and historical recombinations to map for a possible susceptibility gene(s) in the MHC. We performed detailed typing of three MHC-related HSP70 genes and defined allelic combinations in the context of MHC AH. We also modified existing methods to give a simple and accurate method for typing two TNF microsatellites. Using the HSP70 and TNF markers and HLA-DR, –B, and C4 typing of our patients with IBM, we defined a potential site for the MHC-associated susceptibility gene(s) in the region between HLA-DR and C4.

31 citations

Journal ArticleDOI
TL;DR: Phylogenetic analysis showed that the 4336G and 4580A variants clustered together in their respective group and a common polymorphism at nucleotide position 16311 was higher in inclusion body myositis than in Alzheimer's disease and controls, although the increased frequency was not statistically significant.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Imputation of functional variation from large reference panels can help fine map association signals in the MHC, and three amino acid positions in HLA-DRβ1, which are all located in peptide-binding grooves, almost completely explain the M HC association to rheumatoid arthritis risk.
Abstract: The genetic association of the major histocompatibility complex (MHC) to rheumatoid arthritis risk has commonly been attributed to alleles in HLA-DRB1. However, debate persists about the identity of the causal variants in HLA-DRB1 and the presence of independent effects elsewhere in the MHC. Using existing genome-wide SNP data in 5,018 individuals with seropositive rheumatoid arthritis (cases) and 14,974 unaffected controls, we imputed and tested classical alleles and amino acid polymorphisms in HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1 and HLA-DRB1, as well as 3,117 SNPs across the MHC. Conditional and haplotype analyses identified that three amino acid positions (11, 71 and 74) in HLA-DRβ1 and single-amino-acid polymorphisms in HLA-B (at position 9) and HLA-DPβ1 (at position 9), which are all located in peptide-binding grooves, almost completely explain the MHC association to rheumatoid arthritis risk. This study shows how imputation of functional variation from large reference panels can help fine map association signals in the MHC.

799 citations

Journal ArticleDOI
16 Jun 2016
TL;DR: The 10-year mortality has improved and toxic adverse effects of older medications such as cyclophosphamide and glucocorticoids have been partially offset by newer drugs such as mycophenolate mofetil and glucose-sparing regimes.
Abstract: Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect many organs, including the skin, joints, the central nervous system and the kidneys. Women of childbearing age and certain racial groups are typically predisposed to developing the condition. Rare, inherited, single-gene complement deficiencies are strongly associated with SLE, but the disease is inherited in a polygenic manner in most patients. Genetic interactions with environmental factors, particularly UV light exposure, Epstein-Barr virus infection and hormonal factors, might initiate the disease, resulting in immune dysregulation at the level of cytokines, T cells, B cells and macrophages. Diagnosis is primarily clinical and remains challenging because of the heterogeneity of SLE. Classification criteria have aided clinical trials, but, despite this, only one drug (that is, belimumab) has been approved for use in SLE in the past 60 years. The 10-year mortality has improved and toxic adverse effects of older medications such as cyclophosphamide and glucocorticoids have been partially offset by newer drugs such as mycophenolate mofetil and glucocorticoid-sparing regimes. However, further improvements have been hampered by the adverse effects of renal and neuropsychiatric involvement and late diagnosis. Adding to this burden is the increased risk of premature cardiovascular disease in SLE together with the risk of infection made worse by immunosuppressive therapy. Challenges remain with treatment-resistant disease and symptoms such as fatigue. Newer therapies may bring hope of better outcomes, and the refinement to stem cell and genetic techniques might offer a cure in the future.

737 citations

Journal ArticleDOI
TL;DR: The degrees and types of HLA super-locus coordinated gene expression profiles and gene variations have yet to be fully elucidated, integrated and defined for the processes involved with normal cellular and tissue physiology, inflammatory and immune responses, and autoimmune and infectious diseases.
Abstract: The human leukocyte antigen (HLA) super-locus is a genomic region in the chromosomal position 6p21 that encodes the six classical transplantation HLA genes and at least 132 protein coding genes that have important roles in the regulation of the immune system as well as some other fundamental molecular and cellular processes. This small segment of the human genome has been associated with more than 100 different diseases, including common diseases, such as diabetes, rheumatoid arthritis, psoriasis, asthma and various other autoimmune disorders. The first complete and continuous HLA 3.6 Mb genomic sequence was reported in 1999 with the annotation of 224 gene loci, including coding and non-coding genes that were reviewed extensively in 2004. In this review, we present (1) an updated list of all the HLA gene symbols, gene names, expression status, Online Mendelian Inheritance in Man (OMIM) numbers, including new genes, and latest changes to gene names and symbols, (2) a regional analysis of the extended class I, class I, class III, class II and extended class II subregions, (3) a summary of the interspersed repeats (retrotransposons and transposons), (4) examples of the sequence diversity between different HLA haplotypes, (5) intra- and extra-HLA gene interactions and (6) some of the HLA gene expression profiles and HLA genes associated with autoimmune and infectious diseases. Overall, the degrees and types of HLA super-locus coordinated gene expression profiles and gene variations have yet to be fully elucidated, integrated and defined for the processes involved with normal cellular and tissue physiology, inflammatory and immune responses, and autoimmune and infectious diseases.

628 citations

Journal ArticleDOI
TL;DR: It is confirmed that alleles on specific long-range HLA haplotypes determine overall susceptibility and novel genetic associations with susceptibility, location, and behavior of Crohn's disease are described.

610 citations

Journal ArticleDOI
TL;DR: Single-nucleotide polymorphism genotyping and human leukocyte antigen (HLA) imputation now permit the screening of large sample sets, a technique further facilitated by high-throughput sequencing that promise to yield more precise contributions of MHC variants to disease.
Abstract: Over several decades, various forms of genomic analysis of the human major histocompatibility complex (MHC) have been extremely successful in picking up many disease associations. This is to be expected, as the MHC region is one of the most gene-dense and polymorphic stretches of human DNA. It also encodes proteins critical to immunity, including several controlling antigen processing and presentation. Single-nucleotide polymorphism genotyping and human leukocyte antigen (HLA) imputation now permit the screening of large sample sets, a technique further facilitated by high-throughput sequencing. These methods promise to yield more precise contributions of MHC variants to disease. However, interpretation of MHC-disease associations in terms of the functions of variants has been problematic. Most studies confirm the paramount importance of class I and class II molecules, which are key to resistance to infection. Infection is likely driving the extreme variation of these genes across the human population, but this has been difficult to demonstrate. In contrast, many associations with autoimmune conditions have been shown to be specific to certain class I and class II alleles. Interestingly, conditions other than infections and autoimmunity are also associated with the MHC, including some cancers and neuropathies. These associations could be indirect, owing, for example, to the infectious history of a particular individual and selective pressures operating at the population level.

532 citations