scispace - formally typeset
Search or ask a question
Author

C.C.M. van de Wiel

Bio: C.C.M. van de Wiel is an academic researcher from Wageningen University and Research Centre. The author has contributed to research in topics: Rhizobium & Root nodule. The author has an hindex of 17, co-authored 60 publications receiving 2633 citations. Previous affiliations of C.C.M. van de Wiel include University of Amsterdam & Delft University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This article describes a network experiment involving several European laboratories, in which the reproducibility of three popular molecular marker techniques was examined: random-amplified fragment length polymorphism (RAPD), amplified fragment length SNP (AFLP) and sequence-tagged microsatellites (SSR).
Abstract: A number of PCR-based techniques can be used to detect polymorphisms in plants. For their wide-scale usage in germplasm characterisation and breeding it is important that these marker technologies can be exchanged between laboratories, which in turn requires that they can be standardised to yield reproducible results, so that direct collation and comparison of the data are possible. This article describes a network experiment involving several European laboratories, in which the reproducibility of three popular molecular marker techniques was examined: random-amplified fragment length polymorphism (RAPD), amplified fragment length polymorphism (AFLP) and sequence-tagged microsatellites (SSR). For each technique, an optimal system was chosen, which had been standardised and routinely used by one laboratory. This system (genetic screening package) was distributed to different participating laboratories in the network and the results obtained compared with those of the original sender. Different experiences were gained in this exchange experiment with the different techniques. RAPDs proved difficult to reproduce. For AFLPs, a single-band difference was observed in one track, whilst SSR alleles were amplified by all laboratories, but small differences in their sizing were obtained.

895 citations

Journal ArticleDOI
26 Jan 1990-Cell
TL;DR: The pea cDNA clone pPsENOD12 represents a gene involved in the infection process during Pisum sativum L.-Rhizobium leguminosarum bv.

281 citations

Journal ArticleDOI
TL;DR: A possible role of ENOD2 in a major function of the nodule parenchyma, namely creating an oxygen barrier for the central tissue with the Rhizobium containing cells, is discussed.
Abstract: A pea cDNA clone homologous to the soybean early nodulin clone pGmENOD2 that most probably encodes a cell wall protein was isolated. The derived amino acid sequence of the pea ENOD2 protein shows that it contains the same repeating pentapeptides, ProProHisGluLys and ProProGluTyrGln, as the soybean ENOD2 protein. By in situ hybridization the expression of the ENOD2 gene was shown to occur only in the inner cortex of the indeterminate pea nodule. The transcription of the pea ENOD2 gene starts when the inner cortical cells develop from the nodule meristem. In the determinate soybean nodule the ENOD2 gene is expressed in the inner cortex as well as in cells surrounding the vascular bundle that connects the nodule with the root central cylinder. The term 'nodule inner cortex' is misleading, as there is no direct homology with the root inner cortex. Therefore, we propose to consider this tissue as nodule parenchyma. A possible role of ENOD2 in a major function of the nodule parenchyma, namely creating an oxygen barrier for the central tissue with the Rhizobium containing cells, is discussed.

253 citations

Journal ArticleDOI
TL;DR: The amino acid sequence derived from the nucleotide sequences of the cDNAs showed that ENOD5 is an arabinogalactan-like protein involved in the infection process, whereas ENOD3 and ENOD14 have a cysteine cluster suggesting that these are metal-binding proteins.
Abstract: A set of cDNA clones have been characterized that represent early nodulin mRNAs from pea root nodules. By RNA transfer blot analyses, the different early nodulin mRNAs were found to vary in time course of appearance during the development of the indeterminate pea root nodule. In situ hybridization studies demonstrated that the transcripts were located in different zones, representing subsequent steps in development of the central tissue of the root nodule. ENOD12 transcripts were present in every cell of the invasion zone, whereas ENOD5, ENOD3, and ENOD14 transcripts were restricted to the infected cells in successive but partially overlapping zones of the central tissue. We conclude that the corresponding nodulin genes are expressed at subsequent developmental stages. The amino acid sequence derived from the nucleotide sequences of the cDNAs, in combination with the localization data, showed that ENOD5 is an arabinogalactan-like protein involved in the infection process, whereas ENOD3 and ENOD14 have a cysteine cluster suggesting that these are metal-binding proteins. Furthermore, we showed that there is a clear difference in the way Rhizobium induced the infection-related early nodulin genes ENOD5 and ENOD12. A factor acting over a long distance induced the ENOD12 gene, whereas a factor acting over a short distance activated the ENOD5 gene.

234 citations

Journal ArticleDOI
20 Mar 1986-Nature
TL;DR: A second prochlorophyta is reported, one of the dominant species in the shallow eutrophic Loosdrecht lakes in The Netherlands, from which it was isolated in 1984 and which can easily be grown in a mineral medium.
Abstract: Prochlorophyta, suggested as a new division of prokaryotes1, lack phycobilin pigments characteristic of cyanobacteria, but contain chlorophyll b as well as chlorophyll a, characteristic of green algae and higher plants. Since the description of Prochloron didemni as the type species for this division2, no other genera or species have been added to the group. The only published accounts of Prochloron are obligate symbionts of didemnid ascidians3, which are difficult to grow in the absence of their hosts4. Consequently, research on their cell composition and physiology has been handi-capped. Here, we report a second prochlorophyte. This organism is one of the dominant species in the shallow eutrophic Loosdrecht lakes in The Netherlands, from which it was isolated in 1984. Unlike Prochloron, the newly isolated species is filamentous and planktonic. Detailed investigation of its cell structure, composition and physiology is possible as it can easily be grown in a mineral medium.

183 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

01 Dec 2010
TL;DR: In this article, the authors suggest a reduction in the global NPP of 0.55 petagrams of carbon, which would not only weaken the terrestrial carbon sink, but would also intensify future competition between food demand and biofuel production.
Abstract: Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

1,780 citations

Journal ArticleDOI
TL;DR: The objectives of BIOS 781 are to present basic population and quantitative genetic principles, including classical genetics, chromosomal theory of inheritance, and meiotic recombination, and methods for genome-wide association and stratification control.
Abstract: LEARNING The objectives of BIOS 781 are to present: OBJECTIVES: 1. basic population and quantitative genetic principles, including classical genetics, chromosomal theory of inheritance, and meiotic recombination 2. an exposure to QTL mapping methods of complex quantitative traits and linkage methods to detect co-segregation with disease 3. methods for assessing marker-disease linkage disequilibrium, including case-control approaches 4. methods for genome-wide association and stratification control.

1,516 citations

Journal ArticleDOI
TL;DR: Four case studies representing a large variety of population genetics investigations differing in their sampling strategies, in the type of organism studied (plant or animal) and the molecular markers used [microsatellites or amplified fragment length polymorphisms (AFLPs), and the estimated genotyping error rate are considered.
Abstract: Genotyping errors occur when the genotype determined after molecular analysis does not correspond to the real genotype of the individual under consideration. Virtually every genetic data set includes some erroneous genotypes, but genotyping errors remain a taboo subject in population genetics, even though they might greatly bias the final conclusions, especially for studies based on individual identification. Here, we consider four case studies representing a large variety of population genetics investigations differing in their sampling strategies (noninvasive or traditional), in the type of organism studied (plant or animal) and the molecular markers used [microsatellites or amplified fragment length polymorphisms (AFLPs)]. In these data sets, the estimated genotyping error rate ranges from 0.8% for microsatellite loci from bear tissues to 2.6% for AFLP loci from dwarf birch leaves. Main sources of errors were allelic dropouts for microsatellites and differences in peak intensities for AFLPs, but in both cases human factors were non-negligible error generators. Therefore, tracking genotyping errors and identifying their causes are necessary to clean up the data sets and validate the final results according to the precision required. In addition, we propose the outline of a protocol designed to limit and quantify genotyping errors at each step of the genotyping process. In particular, we recommend (i) several efficient precautions to prevent contaminations and technical artefacts; (ii) systematic use of blind samples and automation; (iii) experience and rigor for laboratory work and scoring; and (iv) systematic reporting of the error rate in population genetics studies.

1,391 citations