scispace - formally typeset
Search or ask a question
Author

C. C. Tung

Bio: C. C. Tung is an academic researcher from North Carolina State University. The author has contributed to research in topics: Breaking wave & Gravity wave. The author has an hindex of 15, co-authored 33 publications receiving 16817 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the combined effects of current and waves on the force exerted on an element of a cylinder in a random gravity wave field in deep water are studied, where wave-current interactions are taken into account.

24 citations

Journal ArticleDOI
TL;DR: In this paper, the dispersion relation for a random gravity wave field is derived using the complete system of nonlinear equations, and the correction to this approximation is expressed in terms of the energy spectral function of the wave field.
Abstract: The dispersion relation for a random gravity wave field is derived using the complete system of nonlinear equations. It is found that the generally accepted dispersion relation is only a first-order approximation to the mean value. The correction to this approximation is expressed in terms of the energy spectral function of the wave field. The non-zero mean deviation is proportional to the ratio of the mean Eulerian velocity at the surface and the local phase velocity. In addition to the mean deviation, there is a random scatter. The root-mean-square value of this scatter is proportional to the ratio of the root-mean-square surface velocity and the local phase velocity. As for the phase velocity, the nonzero mean deviation is equal to the mean Eulerian velocity while the root-mean-square scatter is equal to the root-mean-square surface velocity. Special cases are considered and a comparison with experimental data is also discussed.

23 citations

Journal ArticleDOI
TL;DR: In this article, the conditions for the initiation of various modes of response of a free-standing rigid body placed on a frictional horizontal base which undergoes earthquake-like accelerations in both the horizontal and vertical directions were derived using equations of motion appropriate for each mode of motion.
Abstract: This study is concerned with the conditions for the initiation of various modes of response of a free-standing rigid body, initially at rest, placed on a frictional horizontal base which undergoes earthquake-like accelerations in both the horizontal and vertical directions. These conditions are derived using equations of motion appropriate for each mode of motion. The analysis shows that an equivalent horizontal base acceleration may be constructed by dividing the time history of horizontal base acceleration by the sum of gravitational acceleration and the time history of vertical base acceleration. The criteria governing each mode of response of a body of given aspect ratio are then presented graphically with the magnitude of the equivalent base acceleration as abscissa and the coefficient of friction between the body and the base as ordinate. The study shows that a body is more stable while the vertical base acceleration is upwards than when it is absent as expected. When the vertical base acceleration is downwards, although the body is very likely to be lifted off the base, it is nevertheless possible to rock, and slide and rock simultaneously provided the value of coefficient of friction is sufficiently high and the downward vertical base acceleration is not too different from gravitational acceleration.

22 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models, and it is shown that the distribution of the wave energy varies both as a function of directional energy distribution and the direction of propagation of wave component under consideration, and that both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases.
Abstract: The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.

19 citations

Journal ArticleDOI
TL;DR: In this article, the authors extended the theory of Shyu & Phillips (1990) to the situation when short deep-water gravity waves propagate obliquely upon a steady unidirectional irrotational current and are reflected by it.
Abstract: Surface waves superimposed upon a larger-scale flow are blocked and reflected at the points where the group velocities balance the convection by the larger-scale flow. In this study, we first extended the theory of Shyu & Phillips (1990) to the situation when short deep-water gravity waves propagate obliquely upon a steady unidirectional irrotational current and are reflected by it. In this case, the uniformly valid solution and the WKBJ solution of the short waves were derived from the Laplace equation and the kinematical and dynamical boundary conditions. These solutions in terms of some parameters (the expressions for which have also been deduced in this case) take the same forms as those derived by Shyu & Phillips, which by referring to Smith's (1975) theory can even be proved to be valid for gravity waves in an intermediate-depth region and near a curved moving caustic induced by an unsteady multidirectional irrotational current. In this general case, the expressions for certain parameters in these solutions cannot be obtained so that their values must be estimated in a numerical calculation. The algorithm for estimates of some of these parameters that are responsible for the amplitude of the reflected wave not being equal to that of the incident wave in the vicinity of the caustic and therefore are crucial for the computer calculation of the ray solution to be continued after reflection, was illustrated through numerical tests. This algorithm can avoid the error magnification phenomenon that occurred in the previous estimates of the reflected wave in the vicinity of the caustic using the action conservation principle directly. The forms of the solutions have also been utilized to clarify the wave profiles near caustics in a general situation, which indicate that in storm conditions freak waves characterized by a steeper forward face preceded by a deep trough will probably occur in the caustic regions.

19 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF.
Abstract: A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturall...

6,437 citations

Journal ArticleDOI
TL;DR: This work proposes an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently and is a generalization of the classic Wiener filter into multiple, adaptive bands.
Abstract: During the late 1990s, Huang introduced the algorithm called Empirical Mode Decomposition, which is widely used today to recursively decompose a signal into different modes of unknown but separate spectral bands. EMD is known for limitations like sensitivity to noise and sampling. These limitations could only partially be addressed by more mathematical attempts to this decomposition problem, like synchrosqueezing, empirical wavelets or recursive variational decomposition. Here, we propose an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently. The model looks for an ensemble of modes and their respective center frequencies, such that the modes collectively reproduce the input signal, while each being smooth after demodulation into baseband. In Fourier domain, this corresponds to a narrow-band prior. We show important relations to Wiener filter denoising. Indeed, the proposed method is a generalization of the classic Wiener filter into multiple, adaptive bands. Our model provides a solution to the decomposition problem that is theoretically well founded and still easy to understand. The variational model is efficiently optimized using an alternating direction method of multipliers approach. Preliminary results show attractive performance with respect to existing mode decomposition models. In particular, our proposed model is much more robust to sampling and noise. Finally, we show promising practical decomposition results on a series of artificial and real data.

4,111 citations

Journal ArticleDOI
TL;DR: It turns out that EMD acts essentially as a dyadic filter bank resembling those involved in wavelet decompositions, and the hierarchy of the extracted modes may be similarly exploited for getting access to the Hurst exponent.
Abstract: Empirical mode decomposition (EMD) has recently been pioneered by Huang et al. for adaptively representing nonstationary signals as sums of zero-mean amplitude modulation frequency modulation components. In order to better understand the way EMD behaves in stochastic situations involving broadband noise, we report here on numerical experiments based on fractional Gaussian noise. In such a case, it turns out that EMD acts essentially as a dyadic filter bank resembling those involved in wavelet decompositions. It is also pointed out that the hierarchy of the extracted modes may be similarly exploited for getting access to the Hurst exponent.

2,304 citations

Journal ArticleDOI
TL;DR: In this paper, Hilbert spectral analysis is proposed as an alternative to wavelet analysis, which provides not only a more precise definition of particular events in time-frequency space, but also more physically meaningful interpretations of the underlying dynamic processes.
Abstract: We survey the newly developed Hilbert spectral analysis method and its applications to Stokes waves, nonlinear wave evolution processes, the spectral form of the random wave field, and turbulence. Our emphasis is on the inadequacy of presently available methods in nonlinear and nonstationary data analysis. Hilbert spectral analysis is here proposed as an alternative. This new method provides not only a more precise definition of particular events in time-frequency space than wavelet analysis, but also more physically meaningful interpretations of the underlying dynamic processes.

1,945 citations

Journal ArticleDOI
Xiao Jing Wang1
TL;DR: A plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention, and implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Abstract: Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.

1,774 citations