scispace - formally typeset
Search or ask a question
Author

C. Cortijo-Ferrero

Bio: C. Cortijo-Ferrero is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 24, co-authored 42 publications receiving 3893 citations.

Papers
More filters
Journal ArticleDOI
Sebastián F. Sánchez1, Robert C. Kennicutt2, A. Gil de Paz3, G. van de Ven4, José M. Vílchez1, Lutz Wisotzki5, C. J. Walcher5, D. Mast1, J. A. L. Aguerri1, J. A. L. Aguerri6, Sergio Albiol-Pérez7, Almudena Alonso-Herrero1, João Alves8, J. Bakos1, J. Bakos6, T. Bartakova9, Joss Bland-Hawthorn10, Alessandro Boselli11, D. J. Bomans12, África Castillo-Morales3, C. Cortijo-Ferrero1, A. de Lorenzo-Cáceres1, A. de Lorenzo-Cáceres6, A. del Olmo1, Ralf-Jürgen Dettmar12, Angeles I. Díaz13, Simon Ellis14, Simon Ellis10, Jesús Falcón-Barroso6, Jesús Falcón-Barroso1, Hector Flores15, Anna Gallazzi16, Begoña García-Lorenzo6, Begoña García-Lorenzo1, R. M. González Delgado1, Nicolas Gruel, Tim Haines17, C. Hao18, Bernd Husemann5, J. Iglesias-Páramo1, Knud Jahnke4, Benjamin D. Johnson19, Bruno Jungwiert20, Bruno Jungwiert21, Veselina Kalinova4, C. Kehrig5, D. Kupko5, Angel R. Lopez-Sanchez22, Angel R. Lopez-Sanchez14, Mariya Lyubenova4, R. A. Marino1, R. A. Marino3, E. Mármol-Queraltó1, E. Mármol-Queraltó3, I. Márquez1, J. Masegosa1, Sharon E. Meidt4, Jairo Méndez-Abreu1, Jairo Méndez-Abreu6, Ana Monreal-Ibero1, C. Montijo1, A. Mourao23, G. Palacios-Navarro7, Polychronis Papaderos24, Anna Pasquali25, Reynier Peletier, Enrique Pérez1, I. Pérez26, Andreas Quirrenbach, M. Relaño26, F. F. Rosales-Ortega13, F. F. Rosales-Ortega1, Martin Roth5, T. Ruiz-Lara26, Patricia Sanchez-Blazquez13, C. Sengupta1, R. Singh4, Vallery Stanishev23, Scott Trager27, Alexandre Vazdekis1, Alexandre Vazdekis6, Kerttu Viironen1, Vivienne Wild28, Stefano Zibetti16, Bodo L. Ziegler8 
TL;DR: The Calar Alto Legacy Integral Field Area (CALIFA) survey as discussed by the authors was designed to provide a first step in this direction by obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe.
Abstract: The final product of galaxy evolution through cosmic time is the population of galaxies in the local universe. These galaxies are also those that can be studied in most detail, thus providing a stringent benchmark for our understanding of galaxy evolution. Through the huge success of spectroscopic single-fiber, statistical surveys of the Local Universe in the last decade, it has become clear, however, that an authoritative observational description of galaxies will involve measuring their spatially resolved properties over their full optical extent for a statistically significant sample. We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction. We summarize the survey goals and design, including sample selection and observational strategy. We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of similar to 600 galaxies in the Local Universe (0.005 < z < 0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK integral field unit (IFU), with a hexagonal field-of-view of similar to 1.3 square', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 angstrom, using two overlapping setups (V500 and V1200), with different resolutions: R similar to 850 and R similar to 1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis: (i) the final datacubes reach a 3 sigma limiting surface brightness depth of similar to 23.0 mag/arcsec(2) for the V500 grating data (similar to 22.8 mag/arcsec(2) for V1200); (ii) about similar to 70% of the covered field-of-view is above this 3 sigma limit; (iii) the data have a blue-to-red relative flux calibration within a few percent in most of the wavelength range; (iv) the absolute flux calibration is accurate within similar to 8% with respect to SDSS; (v) the measured spectral resolution is similar to 85 km s(-1) for V1200 (similar to 150 km s(-1) for V500); (vi) the estimated accuracy of the wavelength calibration is similar to 5 km s(-1) for the V1200 data (similar to 10 km s(-1) for the V500 data); (vii) the aperture matched CALIFA and SDSS spectra are qualitatively and quantitatively similar. Finally, we show that we are able to carry out all measurements indicated above, recovering the properties of the stellar populations, the ionized gas and the kinematics of both components. The associated maps illustrate the spatial variation of these parameters across the field, reemphasizing the redshift dependence of single aperture spectroscopic measurements. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.

1,143 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the largest and most homogeneous catalog of H ii regions and associations compiled so far, consisting of more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey.
Abstract: We present the largest and most homogeneous catalog of H ii regions and associations compiled so far The catalog comprises more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey We describe the procedures used to detect, select, and analyze the spectroscopic properties of these ionized regions In the current study we focus on characterizing of the radial gradient of the oxygen abundance in the ionized gas, based on the study of the deprojecteddistribution of H ii regions We found that all galaxies without clear evidence of an interaction present a common gradient in the oxygen abundance, with a characteristic slope of α_O/H = −01 dex/r_e between 03 and 2 disk effective radii (r_e), and a scatter compatible with random fluctuations around this value, when the gradient is normalized to the disk effective radius The slope is independent of morphology, the incidence of bars, absolute magnitude, or mass Only those galaxies with evidence of interactions and/or clear merging systems present a significantly shallower gradient, consistent with previous results The majority of the 94 galaxies with H ii regions detected beyond two disk effective radii present a flattening in the oxygen abundance The flattening is statistically significant We cannot provide a conclusive answer regarding the origin of this flattening However, our results indicate that its origin is most probably related to the secular evolution of galaxies Finally, we find a drop/truncation of the oxygen abundance in the inner regions for 26 of the galaxies All of them are non-interacting, mostly unbarred Sb/Sbc galaxies This feature is associated with a central star-forming ring, which suggests that both features are produced by radial gas flows induced by resonance processes Our result suggests that galaxy disks grow inside-out, with metal enrichment driven by the local star formation history and with a small variation galaxy-by-galaxy At a certain galactocentric distance, the oxygen abundance seems to be correlated well with the stellar mass density and total stellar mass of the galaxies, independently of other properties of the galaxies Other processes, such as radial mixing and inflows/outflows seem to have a limited effect on shaping of the radial distribution of oxygen abundances, although they are not ruled out

474 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the largest and most homogeneous catalog of HII regions and associations compiled so far, consisting of more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey.
Abstract: We present the largest and most homogeneous catalog of HII regions and associations compiled so far. The catalog comprises more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey. We describe the procedures used to detect, select, and analyse the spectroscopic properties of these ionized regions. In the current study we focus on the characterization of the radial gradient of the oxygen abundance in the ionized gas, based on the study of the deprojected distribution of HII regions. We found that all galaxies without clear evidence of an interaction present a common gradient in the oxygen abundance, with a characteristic slope of alpha = -0.1 dex/re between 0.3 and 2 disk effective radii, and a scatter compatible with random fluctuations around this value, when the gradient is normalized to the disk effective radius. The slope is independent of morphology, incidence of bars, absolute magnitude or mass. Only those galaxies with evidence of interactions and/or clear merging systems present a significant shallower gradient, consistent with previous results. The majority of the 94 galaxies with H ii regions detected beyond 2 disk effective radii present a flattening in the oxygen abundance. The flattening is statistically significant. We cannot provide with a conclusive answer regarding the origin of this flattening. However, our results indicate that its origin is most probably related to the secular evolution of galaxies. Finally, we find a drop/truncation of the oxygen abundance in the inner regions for 26 of the galaxies. All of them are non-interacting, mostly unbarred, Sb/Sbc galaxies. This feature is associated with a central star-forming ring, which suggests that both features are produced by radial gas flows induced by resonance processes.

434 citations

Journal ArticleDOI
TL;DR: In this article, the authors apply the fossil record method based on spectral synthesis techniques to recover the following physical properties for each spatial resolution element in the target galaxies: the stellar mass surface density (μ_*), stellar extinction (A_V), lightweighted and mass-weighted ages (L, M), and mass weighted metallicity (M).
Abstract: Various different physical processes contribute to the star formation and stellar mass assembly histories of galaxies. One important approach to understanding the significance of these different processes on galaxy evolution is the study of the stellar population content of today's galaxies in a spatially resolved manner. The aim of this paper is to characterize in detail the radial structure of stellar population properties of galaxies in the nearby universe, based on a uniquely large galaxy sample, considering the quality and coverage of the data. The sample under study was drawn from the CALIFA survey and contains 300 galaxies observed with integral field spectroscopy. These cover a wide range of Hubble types, from spheroids to spiral galaxies, while stellar masses range from M_* ∼ 10^9 to 7 x 10^11 M_⨀. We apply the fossil record method based on spectral synthesis techniques to recover the following physical properties for each spatial resolution element in our target galaxies: the stellar mass surface density (μ_*), stellar extinction (A_V), light-weighted and mass-weighted ages ( _L, _M), and mass-weighted metallicity ( _M). To study mean trends with overall galaxy properties, the individual radial profiles are stacked in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd). We confirm that more massive galaxies are more compact, older, more metal rich, and less reddened by dust. Additionally, we find that these trends are preserved spatially with the radial distance to the nucleus. Deviations from these relations appear correlated with Hubble type: earlier types are more compact, older, and more metal rich for a given M-star, which is evidence that quenching is related to morphology, but not driven by mass. Negative gradients of _L are consistent with an inside-out growth of galaxies, with the largest _L gradients in Sb-Sbc galaxies. Further, the mean stellar ages of disks and bulges are correlated and with disks covering a wider range of ages, and late-type spirals hosting younger disks. However, age gradients are only mildly negative or flat beyond R∼2 HLR (half light radius), indicating that star formation is more uniformly distributed or that stellar migration is important at these distances. The gradients in stellar mass surface density depend mostly on stellar mass, in the sense that more massive galaxies are more centrally concentrated. Whatever sets the concentration indices of galaxies obviously depends less on quenching/morphology than on the depth of the potential well. There is a secondary correlation in the sense that at the same M_* early-type galaxies have steeper gradients. The μ_* gradients outside 1 HLR show no dependence on Hubble type. We find mildly negative _M gradients, which are shallower than predicted from models of galaxy evolution in isolation. In general, metallicity gradients depend on stellar mass, and less on morphology, hinting that metallicity is affected by both - the depth of the potential well and morphology/quenching. Thus, the largest _M gradients occur in Milky Way-like Sb-Sbc galaxies, and are similar to those measured above the Galactic disk. Sc spirals show flatter _M gradients, possibly indicating a larger contribution from secular evolution in disks. The galaxies from the sample have decreasing-outward stellar extinction; all spirals show similar radial profiles, independent from the stellar mass, but redder than E and S0. Overall, we conclude that quenching processes act in manners that are independent of mass, while metallicity and galaxy structure are influenced by mass-dependent processes.

245 citations

Journal ArticleDOI
TL;DR: In this article, the authors applied the fossil record method of stellar population spectral synthesis to recover the spatially and time resolved star formation history of each galaxy, and showed that the signal of downsizing is spatially preserved with both inner and outer regions growing faster for more massive galaxies.
Abstract: The growth of galaxies is one of the key problems in understanding the structure and evolution of the universe and its constituents. Galaxies can grow their stellar mass by accretion of halo or intergalactic gas clouds, or by merging with smaller or similar mass galaxies. The gas available translates into a rate of star formation, which controls the generation of metals in the universe. The spatially resolved history of their stellar mass assembly has not been obtained so far for any given galaxy beyond the Local Group. Here we demonstrate how massive galaxies grow their stellar mass inside-out. We report the results from the analysis of the first 105 galaxies of the largest three-dimensional spectroscopic survey to date of galaxies in the local universe (CALIFA). We apply the fossil record method of stellar population spectral synthesis to recover the spatially and time resolved star formation history of each galaxy. We show, for the first time, that the signal of downsizing is spatially preserved, with both inner and outer regions growing faster for more massive galaxies. Further, we show that the relative growth rate of the spheroidal component, nucleus, and inner galaxy, which happened 5-7 Gyr ago, shows a maximum at a critical stellar mass ~7 × 1010 M ☉. We also find that galaxies less massive than ~1010 M ☉ show a transition to outside-in growth, thus connecting with results from resolved studies of the growth of low-mass galaxies.

237 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Virgo Consortium's EAGLE project as discussed by the authors is a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes, where thermal energy is injected into the gas, allowing winds to develop without predetermined speed or mass loading factors.
Abstract: We introduce the Virgo Consortium's EAGLE project, a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes. We discuss the limitations of such simulations in light of their finite resolution and poorly constrained subgrid physics, and how these affect their predictive power. One major improvement is our treatment of feedback from massive stars and AGN in which thermal energy is injected into the gas without the need to turn off cooling or hydrodynamical forces, allowing winds to develop without predetermined speed or mass loading factors. Because the feedback efficiencies cannot be predicted from first principles, we calibrate them to the z~0 galaxy stellar mass function and the amplitude of the galaxy-central black hole mass relation, also taking galaxy sizes into account. The observed galaxy mass function is reproduced to ≲0.2 dex over the full mass range, 108

2,828 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Abstract: We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star-formation rates are discussed, and updated prescriptions for calculating star-formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.

2,525 citations

Journal ArticleDOI
TL;DR: Fuzzy dark matter (FDM) as discussed by the authorsDM is an alternative to CDM, which is an extremely light boson having a de Broglie wavelength inside the galaxy.
Abstract: Many aspects of the large-scale structure of the Universe can be described successfully using cosmological models in which $27\ifmmode\pm\else\textpm\fi{}1%$ of the critical mass-energy density consists of cold dark matter (CDM). However, few---if any---of the predictions of CDM models have been successful on scales of $\ensuremath{\sim}10\text{ }\text{ }\mathrm{kpc}$ or less. This lack of success is usually explained by the difficulty of modeling baryonic physics (star formation, supernova and black-hole feedback, etc.). An intriguing alternative to CDM is that the dark matter is an extremely light ($m\ensuremath{\sim}{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}$) boson having a de Broglie wavelength $\ensuremath{\lambda}\ensuremath{\sim}1\text{ }\text{ }\mathrm{kpc}$, often called fuzzy dark matter (FDM). We describe the arguments from particle physics that motivate FDM, review previous work on its astrophysical signatures, and analyze several unexplored aspects of its behavior. In particular, (i) FDM halos or subhalos smaller than about $1{0}^{7}(m/{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}{)}^{\ensuremath{-}3/2}$ ${M}_{\ensuremath{\bigodot}}$ do not form, and the abundance of halos smaller than a few times $1{0}^{10}(m/{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}{)}^{\ensuremath{-}4/3}$ ${M}_{\ensuremath{\bigodot}}$ is substantially smaller in FDM than in CDM. (ii) FDM halos are comprised of a central core that is a stationary, minimum-energy solution of the Schr\"odinger-Poisson equation, sometimes called a ``soliton,'' surrounded by an envelope that resembles a CDM halo. The soliton can produce a distinct signature in the rotation curves of FDM-dominated systems. (iii) The transition between soliton and envelope is determined by a relaxation process analogous to two-body relaxation in gravitating N-body systems, which proceeds as if the halo were composed of particles with mass $\ensuremath{\sim}\ensuremath{\rho}{\ensuremath{\lambda}}^{3}$ where $\ensuremath{\rho}$ is the halo density. (iv) Relaxation may have substantial effects on the stellar disk and bulge in the inner parts of disk galaxies, but has negligible effect on disk thickening or globular cluster disruption near the solar radius. (v) Relaxation can produce FDM disks but a FDM disk in the solar neighborhood must have a half-thickness of at least $\ensuremath{\sim}300(m/{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}{)}^{\ensuremath{-}2/3}\text{ }\text{ }\mathrm{pc}$ and a midplane density less than $0.2(m/{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}{)}^{2/3}$ times the baryonic disk density. (vi) Solitonic FDM subhalos evaporate by tunneling through the tidal radius and this limits the minimum subhalo mass inside $\ensuremath{\sim}30\text{ }\text{ }\mathrm{kpc}$ of the Milky Way to a few times $1{0}^{8}(m/{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}{)}^{\ensuremath{-}3/2}$ ${M}_{\ensuremath{\bigodot}}$. (vii) If the dark matter in the Fornax dwarf galaxy is composed of CDM, most of the globular clusters observed in that galaxy should have long ago spiraled to its center, and this problem is resolved if the dark matter is FDM. (viii) FDM delays galaxy formation relative to CDM but its galaxy-formation history is consistent with current observations of high-redshift galaxies and the late reionization observed by Planck. If the dark matter is composed of FDM, most observations favor a particle mass $\ensuremath{\gtrsim}{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}$ and the most significant observational consequences occur if the mass is in the range $1--10\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}$. There is tension with observations of the Lyman-$\ensuremath{\alpha}$ forest, which favor $m\ensuremath{\gtrsim}10--20\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}22}\text{ }\text{ }\mathrm{eV}$ and we discuss whether more sophisticated models of reionization may resolve this tension.

1,365 citations

Journal ArticleDOI
TL;DR: SDSS-IV as mentioned in this paper is a project encompassing three major spectroscopic programs: the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and the Time Domain Spectroscopy Survey (TDSS).
Abstract: We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median $z\sim 0.03$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $z\sim 0.6$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.

1,200 citations

Journal ArticleDOI
TL;DR: MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) as mentioned in this paper employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers).
Abstract: We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary in diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 A at R ~ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (A–1 per 2'' fiber) at 23 AB mag arcsec–2, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M * 109 M ☉ using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.

1,104 citations