scispace - formally typeset
Search or ask a question
Author

C.D. McGillem

Other affiliations: Virginia Tech
Bio: C.D. McGillem is an academic researcher from Purdue University. The author has contributed to research in topics: Filter (signal processing) & Kalman filter. The author has an hindex of 15, co-authored 31 publications receiving 1635 citations. Previous affiliations of C.D. McGillem include Virginia Tech.

Papers
More filters
Journal ArticleDOI
TL;DR: The extensive empirical data indicate that path loss is dependent upon local surroundings and is log-normally distributed, temporal fading is Rician, and small-scale signal fluctuations due to receiver motion are primarily Rayleigh, although Rician and log-normal distributions fit some of the data.
Abstract: The authors detail the results of narrowband propagation measurements performed at five factories. The extensive empirical data indicate that path loss is dependent upon local surroundings and is log-normally distributed, temporal fading is Rician, and small-scale signal fluctuations due to receiver motion are primarily Rayleigh, although Rician and log-normal distributions fit some of the data. Shadowing effects of common factory equipment likely to obstruct indoor radio paths are also examined. >

292 citations

Journal ArticleDOI
TL;DR: In this article, two approaches to the two-sensor track-fusion problem are compared and an example shows the amount of improvement in the uncertainty of the resulting estimate of the state vector with the measurement fusion method.
Abstract: There are two approaches to the two-sensor track-fusion problem. Y Bar-Shalom and L. Campo (ibid., vol.AES-22, 803-5, Nov. 1986) presented the state vector fusion method, which combines state vectors from the two sensors to form a new estimate while taking into account the correlated process noise. The measurement fusion method or data compression of D. Willner et al. (1976) combines the measurements from the two sensors first and then uses this fused measurement to estimate the state vector. The two methods are compared and an example shows the amount of improvement in the uncertainty of the resulting estimate of the state vector with the measurement fusion method. >

273 citations

Journal ArticleDOI
TL;DR: Speech rate appears to be a global parameter, one that affects the entire command sequence for the utterance, one for each rate of production.
Abstract: In order to examine the stability and patterning of speech movement sequences, movements of the lip were recorded as subjects produced a phrase at normal, fast, and slow rates. Three methods of analysis were employed. First, a new index of spatiotemporal stability was derived by summing the standard deviations computed across amplitude- and time-normalized displacement records. This index indicated that normal and fast rates of speech production result in more stable movement execution compared to slow rates. In the second analysis, the relative time of occurrence of the peak velocity of the three middle opening movements of the utterance was measured. For each of the three peaks, the preservation of relative timing was assessed by applying Genter's (1987) slope test. The results clearly indicate that the relative timing of these events does not remain constant across changes in speech rate. The relative timing of the middle opening gestures shifted, becoming later as utterance duration increased. In a third analysis, pattern recognition techniques were applied to the normalized displacement waveforms. A classification algorithm was highly successful in sorting waveforms into normal, fast, and slow rate conditions. These findings were interpreted to suggest that, within a subject, three distinct patterns or movement templates exist, one for each rate of production. Speech rate appears to be a global parameter, one that affects the entire command sequence for the utterance.

231 citations

Journal ArticleDOI
TL;DR: An experimental position-measuring system has been built and tested, and it demonstrated the ability of this technique to function as a key element in a navigation system for autonomous vehicles.
Abstract: A method for navigating autonomous vehicles is presented. Based on the three-point problem from land surveying, this navigational technique makes use of angular measurements between fixed beacon pairs. Extremely accurate position information can be obtained over a large area with simple trigonometric or analytic geometry calculations. Typical worst-case errors are of the order of 10 cm throughout a 2500 m/sup 2/ workspace. An experimental position-measuring system has been built and tested, and it demonstrated the ability of this technique to function as a key element in a navigation system for autonomous vehicles. >

130 citations

Journal ArticleDOI
TL;DR: A new approach to speech movement trajectory analysis is introduced, where trajectories from multiple movement sequences are time- and amplitude-normalized, and the STI (spatiotemporal index) is computed to capture the degree of convergence of a set of trajectories onto a single, underlying movement template.
Abstract: Speech requires the control of complex movements of orofacial structures to produce dynamic variations in the vocal tract transfer function. The nature of the underlying motor control processes has...

116 citations


Cited by
More filters
Book
01 Jan 1997
TL;DR: The Nature of Remote Sensing: Introduction, Sensor Characteristics and Spectral Stastistics, and Spatial Transforms: Introduction.
Abstract: The Nature of Remote Sensing: Introduction. Remote Sensing. Information Extraction from Remote-Sensing Images. Spectral Factors in Remote Sensing. Spectral Signatures. Remote-Sensing Systems. Optical Sensors. Temporal Characteristics. Image Display Systems. Data Systems. Summary. Exercises. References. Optical Radiation Models: Introduction. Visible to Short Wave Infrared Region. Solar Radiation. Radiation Components. Surface-Reflected. Unscattered Component. Surface-Reflected. Atmosphere-Scattered Component. Path-Scattered Component. Total At-Sensor. Solar Radiance. Image Examples in the Solar Region. Terrain Shading. Shadowing. Atmospheric Correction. Midwave to Thermal Infrared Region. Thermal Radiation. Radiation Components. Surface-Emitted Component. Surface-Reflected. Atmosphere-Emitted Component. Path-Emitted Component. Total At-Sensor. Emitted Radiance. Total Solar and Thermal Upwelling Radiance. Image Examples in the Thermal Region. Summary. Exercises. References. Sensor Models: Introduction. Overall Sensor Model. Resolution. The Instrument Response. Spatial Resolution. Spectral Resolution. Spectral Response. Spatial Response. Optical PSFopt. Image Motion PSFIM. Detector PSFdet. Electronics PSFel. Net PSFnet. Comparison of Sensor PSFs. PSF Summary for TM. Imaging System Simulation. Amplification. Sampling and Quantization. Simplified Sensor Model. Geometric Distortion. Orbit Models. Platform Attitude Models. Scanner Models. Earth Model. Line and Whiskbroom ScanGeometry. Pushbroom Scan Geometry. Topographic Distortion. Summary. Exercises. References. Data Models: Introduction. A Word on Notation. Univariate Image Statistics. Histogram. Normal Distribution. Cumulative Histogram. Statistical Parameters. Multivariate Image Statistics. Reduction to Univariate Statistics. Noise Models. Statistical Measures of Image Quality. Contrast. Modulation. Signal-to-Noise Ratio (SNR). Noise Equivalent Signal. Spatial Statistics. Visualization of Spatial Covariance. Covariance with Semivariogram. Separability and Anisotropy. Power Spectral Density. Co-occurrence Matrix. Fractal Geometry. Topographic and Sensor Effects. Topography and Spectral Statistics. Sensor Characteristics and Spectral Stastistics. Sensor Characteristics and Spectral Scattergrams. Summary. Exercises. References. Spectral Transforms: Introduction. Feature Space. Multispectral Ratios. Vegetation Indexes. Image Examples. Principal Components. Standardized Principal Components (SPC) Transform. Maximum Noise Fraction (MNF) Transform. Tasseled Cap Tranformation. Contrast Enhancement. Transformations Based on Global Statistics. Linear Transformations. Nonlinear Transformations. Normalization Stretch. Reference Stretch. Thresholding. Adaptive Transformation. Color Image Contrast Enhancement. Min-max Stretch. Normalization Stretch. Decorrelation Stretch. Color Spacer Transformations. Summary. Exercises. References. Spatial Transforms: Introduction. An Image Model for Spatial Filtering. Convolution Filters. Low Pass and High Pass Filters. High Boost Filters. Directional Filters. The Border Region. Characterization of Filtered Images. The Box Filter Algorithm. Cascaded Linear Filters. Statistical Filters. Gradient Filters. Fourier Synthesis. Discrete Fourier Transforms in 2-D. The Fourier Components. Filtering with the Fourier Transform. Transfer Functions. The Power Spectrum. Scale Space Transforms. Image Resolution Pyramids. Zero-Crossing Filters. Laplacian-of-Gaussian (LoG) Filters. Difference-of-Gaussians (DoG) Filters.Wavelet Transforms. Summary. Exercises. References. Correction and Calibration: Introduction. Noise Correction. Global Noise. Sigma Filter. Nagao-Matsuyama Filter. Local Noise. Periodic Noise. Distriping 359. Global,Linear Detector Matching. Nonlinear Detector Matching. Statistical Modification to Linear and Nonlinear Detector. Matching. Spatial Filtering Approaches. Radiometric Calibration. Sensor Calibration. Atmospheric Correction. Solar and Topographic Correction. Image Examples. Calibration and Normalization of Hyperspectral Imagery. AVIRIS Examples. Distortion Correction. Polynomial Distortion Models. Ground Control Points (GCPs). Coordinate Transformation. Map Projections. Resampling. Summary. Exercises References. Registration and Image Fusion: Introduction. What is Registration? Automated GCP Location. Area Correlation. Other Spatial Features. Orthrectification. Low-Resolution DEM. High-Resolution DEM. Hierarchical Warp Stereo. Multi-Image Fusion. Spatial Domain Fusion. High Frequency Modulation. Spectral Domain Fusion. Fusion Image Examples. Summary. Exercises. References. Thematic Classification: Introduction. The Importance of Image Scale. The Notion of Similarity. Hard Versus Soft Classification. Training the Classifier. Supervised Training. Unsupervised Training. K-Means Clustering Algorithm. Clustering Examples. Hybrid Supervised/Unsupervised Training. Non-Parametric Classification Algorithms. Level-Slice. Nearest-Mean. Artificial Neural Networks (ANNs). Back-Propagation Algorithm. Nonparametric Classification Examples. Parametric Classification Algorithms. Estimation of Model-Parameters. Discriminant Functions. The Normal Distribution Model. Relation to the Nearest-Mean Classifier. Supervised Classification Examples and Comparison to Nonparametric Classifiers. Segmentation. Region Growing. Region Labeling. Sub-Pixel Classification. The Linear Mixing Model. Unmixing Model. Hyperspectral Image Analysis. Visualization of the Image Cube. Feature Extraction. Image Residuals. Pre-Classification Processing and Feature Extraction. Classification Algorithms. Exercises. Error Analysis. Multitemporal Images. Summary. References. Index.

2,290 citations

Journal ArticleDOI
TL;DR: A comprehensive and up-to-date survey of the techniques for tracking maneuvering targets without addressing the measurement-origin uncertainty is presented in this article, including 2D and 3D maneuver models as well as coordinate-uncoupled generic models for target motion.
Abstract: This is the first part of a comprehensive and up-to-date survey of the techniques for tracking maneuvering targets without addressing the so-called measurement-origin uncertainty. It surveys various mathematical models of target motion/dynamics proposed for maneuvering target tracking, including 2D and 3D maneuver models as well as coordinate-uncoupled generic models for target motion. This survey emphasizes the underlying ideas and assumptions of the models. Interrelationships among models and insight to the pros and cons of models are provided. Some material presented here has not appeared elsewhere.

1,897 citations

01 Jan 1993
TL;DR: The principles of radio propagation in indoor environments are reviewed, the channel is modeled as a linear time-varying filter at each location in the three-dimensional space, and the properties of the filter's impulse response are described.

1,735 citations

Journal ArticleDOI
01 Jul 1993
TL;DR: In this paper, a tutorial survey of radio propagation in indoor environments is presented, where the channel is modeled as a linear time-varying filter at each location in the 3D space, and the properties of the filter's impulse response are described.
Abstract: In this tutorial survey the principles of radio propagation in indoor environments are reviewed. The channel is modeled as a linear time-varying filter at each location in the three-dimensional space, and the properties of the filter's impulse response are described. Theoretical distributions of the sequences of arrival times, amplitudes and phases are presented. Other relevant concepts such as spatial and temporal variations of the channel, large-scale path losses, mean excess delay and RMS delay spread are explored. Propagation characteristics of the indoor and outdoor channels are compared and their major differences are outlined. Previous measurement and modeling efforts are surveyed, and areas for future research are suggested. >

1,696 citations

Journal ArticleDOI
TL;DR: This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.
Abstract: Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum. These frequencies also offer the potential for revolutionary applications that will be made possible by new thinking, and advances in devices, circuits, software, signal processing, and systems. This paper describes many of the technical challenges and opportunities for wireless communication and sensing applications above 100 GHz, and presents a number of promising discoveries, novel approaches, and recent results that will aid in the development and implementation of the sixth generation (6G) of wireless networks, and beyond. This paper shows recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. This paper also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas. Also, new results that give insights into power efficient beam steering algorithms, and new propagation and partition loss models above 100 GHz are given, and promising imaging, array processing, and position location results are presented. The implementation of spatial consistency at THz frequencies, an important component of channel modeling that considers minute changes and correlations over space, is also discussed. This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.

1,352 citations