scispace - formally typeset
Search or ask a question
Author

C. D. Sheehy

Bio: C. D. Sheehy is an academic researcher from University of Chicago. The author has contributed to research in topics: Cosmic microwave background & Telescope. The author has an hindex of 17, co-authored 39 publications receiving 1807 citations. Previous affiliations of C. D. Sheehy include Brookhaven National Laboratory & University of Minnesota.

Papers
More filters
Journal ArticleDOI
TL;DR: An analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season yields an upper limit r_{0.05}<0.09 at 95% confidence, which is robust to variations explored in analysis and priors.
Abstract: We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95×150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23×95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23×353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r ) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r_(0.05) <0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r_(0.05) <0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves.

826 citations

Posted Content
TL;DR: In this article, the authors present the science case, reference design, and project plan for the Stage-4 ground-based cosmic microwave background experiment CMB-S4, as well as the experimental data.
Abstract: We present the science case, reference design, and project plan for the Stage-4 ground-based cosmic microwave background experiment CMB-S4.

362 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present measurements of polarization lensing using the 150 GHz maps which include all data taken by the BICEP2 & Keck Array CMB polarization experiments up to and including the 2014 observing season (BK14).
Abstract: We present measurements of polarization lensing using the 150 GHz maps which include all data taken by the BICEP2 & Keck Array CMB polarization experiments up to and including the 2014 observing season (BK14). Despite their modest angular resolution ($\sim 0.5^\circ$), the excellent sensitivity ($\sim 3\mu$K-arcmin) of these maps makes it possible to directly reconstruct the lensing potential using only information at larger angular scales ($\ell\leq 700$). From the auto-spectrum of the reconstructed potential we measure an amplitude of the spectrum to be $A^{\phi\phi}_{\rm L}=1.15\pm 0.36$ (Planck $\Lambda$CDM prediction corresponds to $A^{\phi\phi}_{\rm L}=1$), and reject the no-lensing hypothesis at 5.8$\sigma$, which is the highest significance achieved to date using an EB lensing estimator. Taking the cross-spectrum of the reconstructed potential with the Planck 2015 lensing map yields $A^{\phi\phi}_{\rm L}=1.13\pm 0.20$. These direct measurements of $A^{\phi\phi}_{\rm L}$ are consistent with the $\Lambda$CDM cosmology, and with that derived from the previously reported BK14 B-mode auto-spectrum ($A^{\rm BB}_{\rm L}=1.20\pm 0.17$). We perform a series of null tests and consistency checks to show that these results are robust against systematics and are insensitive to analysis choices. These results unambiguously demonstrate that the B-modes previously reported by BICEP / Keck at intermediate angular scales ($150\lesssim\ell\lesssim 350$) are dominated by gravitational lensing. The good agreement between the lensing amplitudes obtained from the lensing reconstruction and B-mode spectrum starts to place constraints on any alternative cosmological sources of B-modes at these angular scales.

96 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present measurements of polarization lensing using the 150 GHz maps, which include all data taken by the BICEP2 and Keck Array Cosmic Microwave Background polarization experiments up to and including the 2014 observing season (BK14).
Abstract: We present measurements of polarization lensing using the 150 GHz maps, which include all data taken by the BICEP2 and Keck Array Cosmic Microwave Background polarization experiments up to and including the 2014 observing season (BK14). Despite their modest angular resolution (~0o.5), the excellent sensitivity (~3μK-arcmin) of these maps makes it possible to directly reconstruct the lensing potential using only information at larger angular scales (l ⩾ 700). From the auto-spectrum of the reconstructed potential, we measure an amplitude of the spectrum to be A_L^(oo) = 1.15 ± 0.36 (Planck ΛCDM prediction corresponds to A_L^(oo) = 1) and reject the no-lensing hypothesis at 5.8σ, which is the highest significance achieved to date using an EB lensing estimator. Taking the cross-spectrum of the reconstructed potential with the Planck 2015 lensing map yields A_L^(oo) = 1.13 ± 0.20. These direct measurements of A_L^(oo) are consistent with the ΛCDM cosmology and with that derived from the previously reported BK14 B-mode auto-spectrum (A_L^(BB) = 1.20 ± 0.17). We perform a series of null tests and consistency checks to show that these results are robust against systematics and are insensitive to analysis choices. These results unambiguously demonstrate that the B modes previously reported by BICEP/Keck at intermediate angular scales (150 ≾ l ≾ 350) are dominated by gravitational lensing. The good agreement between the lensing amplitudes obtained from the lensing reconstruction and B-mode spectrum starts to place constraints on any alternative cosmological sources of B modes at these angular scales.

85 citations

Proceedings ArticleDOI
TL;DR: The BICEP2 and the Keck Array are part of a program of experiments at the South Pole whose main goal is to achieve the sensitivity and systematic control necessary for measurements of the tensor-to-scalar ratio at σ(r) ~ 0:01 as discussed by the authors.
Abstract: Searching for evidence of inflation by measuring B-modes in the cosmic microwave background (CMB) polarization at degree angular scales remains one of the most compelling experimental challenges in cosmology. BICEP2 and the Keck Array are part of a program of experiments at the South Pole whose main goal is to achieve the sensitivity and systematic control necessary for measurements of the tensor-to-scalar ratio at σ(r) ~0:01. Beam imperfections that are not sufficiently accounted for are a potential source of spurious polarization that could interfere with that goal. The strategy of BICEP2 and the Keck Array is to completely characterize their telescopes' polarized beam response with a combination of in-lab, pre-deployment, and on-site calibrations. We Sereport the status of these experiments, focusing on continued improved understanding of their beams. Far-field measurements of the BICEP2 beam with a chopped thermal source, combined with analysis improvements, show that the level of residual beam-induced systematic errors is acceptable for the goal of σ(r) ~ 0:01 measurements. Beam measurements of the Keck Array side lobes helped identify a way to reduce optical loading with interior cold baffles, which we installed in late 2013. These baffles reduced total optical loading, leading to a ~ 10% increase in mapping speed for the 2014 observing season. The sensitivity of the Keck Array continues to improve: for the 2013 season it was 9:5 μK _/s noise equivalent temperature (NET). In 2014 we converted two of the 150-GHz cameras to 100 GHz for foreground separation capability. We have shown that the BICEP2 and the Keck Array telescope technology is sufficient for the goal of σ(r) ~ 0:01 measurements. Furthermore, the program is continuing with BICEP3, a 100-GHz telescope with 2560 detectors. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

57 citations


Cited by
More filters
Journal ArticleDOI
Peter A. R. Ade, Nabila Aghanim, Monique Arnaud, Frederico Arroja, M. Ashdown, J. Aumont, Carlo Baccigalupi, Mario Ballardini, A. J. Banday, R. B. Barreiro, Nicola Bartolo, E. Battaner, K. Benabed, Alain Benoit, A. Benoit-Lévy, J.-P. Bernard, Marco Bersanelli, P. Bielewicz, J. J. Bock, Anna Bonaldi, Laura Bonavera, J. R. Bond, Julian Borrill, François R. Bouchet, F. Boulanger, M. Bucher, Carlo Burigana, R. C. Butler, Erminia Calabrese, Jean-François Cardoso, A. Catalano, Anthony Challinor, A. Chamballu, R.-R. Chary, H. C. Chiang, P. R. Christensen, Sarah E. Church, David L. Clements, S. Colombi, L. P. L. Colombo, C. Combet, D. Contreras, F. Couchot, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, Luigi Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, Jacques Delabrouille, F.-X. Désert, Jose M. Diego, H. Dole, S. Donzelli, Olivier Doré, Marian Douspis, A. Ducout, X. Dupac, George Efstathiou, F. Elsner, Torsten A. Ensslin, H. K. Eriksen, James R. Fergusson, Fabio Finelli, Olivier Forni, M. Frailis, Aurelien A. Fraisse, E. Franceschi, A. Frejsel, Andrei V. Frolov, S. Galeotta, Silvia Galli, K. Ganga, C. Gauthier, M. Giard, Y. Giraud-Héraud, E. Gjerløw, J. González-Nuevo, Krzysztof M. Gorski, Serge Gratton, A. Gregorio, Alessandro Gruppuso, Jon E. Gudmundsson, Jan Hamann, Will Handley, F. K. Hansen, Duncan Hanson, D. L. Harrison, Sophie Henrot-Versille, C. Hernández-Monteagudo, D. Herranz, S. R. Hildebrandt, E. Hivon, Michael P. Hobson, W. A. Holmes 
TL;DR: In this article, the authors report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements, which are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles.
Abstract: We report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements. The results are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be $n_\mathrm{s}=0.9649\pm 0.0042$ at 68% CL and show no evidence for a scale dependence of $n_\mathrm{s}.$ Spatial flatness is confirmed at a precision of 0.4% at 95% CL with the combination with BAO data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, $r_{0.002}<0.10$, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain $r_{0.002}<0.056$. In the framework of single-field inflationary models with Einstein gravity, these results imply that: (a) slow-roll models with a concave potential, $V" (\phi) < 0,$ are increasingly favoured by the data; and (b) two different methods for reconstructing the inflaton potential find no evidence for dynamics beyond slow roll. Non-parametric reconstructions of the primordial power spectrum consistently confirm a pure power law. A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectrum, a result further strengthened for certain oscillatory models by a new combined analysis that includes Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadrupolar modulation of the primordial fluctuations. However, the polarization data do not confirm physical models for a scale-dependent dipolar modulation.

3,438 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this paper, the cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies were presented, with good consistency with the standard spatially-flat 6-parameter CDM cosmology having a power-law spectrum of adiabatic scalar perturbations from polarization, temperature, and lensing separately and in combination.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter $\Lambda$CDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base $\Lambda$CDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density $\Omega_c h^2 = 0.120\pm 0.001$, baryon density $\Omega_b h^2 = 0.0224\pm 0.0001$, scalar spectral index $n_s = 0.965\pm 0.004$, and optical depth $\tau = 0.054\pm 0.007$ (in this abstract we quote $68\,\%$ confidence regions on measured parameters and $95\,\%$ on upper limits). The angular acoustic scale is measured to $0.03\,\%$ precision, with $100\theta_*=1.0411\pm 0.0003$. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-$\Lambda$CDM cosmology, the inferred late-Universe parameters are: Hubble constant $H_0 = (67.4\pm 0.5)$km/s/Mpc; matter density parameter $\Omega_m = 0.315\pm 0.007$; and matter fluctuation amplitude $\sigma_8 = 0.811\pm 0.006$. We find no compelling evidence for extensions to the base-$\Lambda$CDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be $N_{\rm eff} = 2.99\pm 0.17$, and the neutrino mass is tightly constrained to $\sum m_ u< 0.12$eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -$\Lambda$CDM at over $2\,\sigma$, which pulls some parameters that affect the lensing amplitude away from the base-$\Lambda$CDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

3,077 citations

Journal ArticleDOI
TL;DR: The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way.
Abstract: (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg$^2$ field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5$\sigma$ point-source depth in a single visit in $r$ will be $\sim 24.5$ (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg$^2$ with $\delta<+34.5^\circ$, and will be imaged multiple times in six bands, $ugrizy$, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg$^2$ region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to $r\sim27.5$. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.

2,738 citations

Journal ArticleDOI
TL;DR: An excess of B-mode power over the base lensed-ΛCDM expectation is found in the range 30 < ℓ < 150, inconsistent with the null hypothesis at a significance of >5σ, and it is shown that systematic contamination is much smaller than the observed excess.
Abstract: We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B -mode power spectrum around l∼80 . The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300 μK CMB s √ . BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U . In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B -mode power over the base lensed-ΛCDM expectation in the range 30 5σ . Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∼(5–10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ . The observed B -mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r=0.20 +0.07 −0.05 , with r=0 disfavored at 7.0σ . Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets

1,954 citations

Journal ArticleDOI
TL;DR: In this paper, the authors systematically review some standard issues and also the latest developments of modified gravity in cosmology, emphasizing on inflation, bouncing cosmology and late-time acceleration era.

1,950 citations