scispace - formally typeset
Search or ask a question
Author

C. Davis

Bio: C. Davis is an academic researcher from Oregon State University. The author has contributed to research in topics: Ocean color & Hyperspectral imaging. The author has an hindex of 3, co-authored 3 publications receiving 275 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The HICO is an innovative prototype sensor that builds on extensive experience with airborne sensors and makes extensive use of commercial off-the-shelf components to build a space sensor at a small fraction of the usual cost and time.
Abstract: The Hyperspectral Imager for the Coastal Ocean (HICO) is the first spaceborne hyperspectral sensor designed specifically for the coastal ocean and estuarial, riverine, or other shallow-water areas The HICO generates hyperspectral images, primarily over the 400-900 nm spectral range, with a ground sample distance of ≈90 m (at nadir) and a high signal-to-noise ratio The HICO is now operating on the International Space Station (ISS) Its cross-track and along-track fields of view are 42 km (at nadir) and 192 km, respectively, for a total scene area of 8000 km(2) The HICO is an innovative prototype sensor that builds on extensive experience with airborne sensors and makes extensive use of commercial off-the-shelf components to build a space sensor at a small fraction of the usual cost and time Here we describe the instrument's design and characterization and present early images from the ISS

158 citations

Journal ArticleDOI
TL;DR: The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey as discussed by the authors.
Abstract: The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95deg-100degW, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.

124 citations

Proceedings ArticleDOI
22 Jul 2012
TL;DR: The Ocean Color CAL/VAL team is evaluating the VIIRS bio-optical products for real-time operations and is contributing to the JPSS Team to evaluate the overall mission, including calibration and inter-satellite product consistency.
Abstract: The Ocean Color CAL/VAL team is evaluating the VIIRS bio-optical products for real-time operations. VIIRS ocean data are being processed using standard government algorithms, and channel calibration and product validation evaluation activities are ongoing. A network of 27 global “Golden Regions” has been established to evaluate and validate bio-optical products. Satellite inter-comparison for data consistency with current ocean color products, and real time vicarious adjustment calculation are performed using in situ water leaving radiance propagated to Top of Atmosphere in coastal and open ocean regions. In addition, routine matchups with VIIRS and MODIS-Aqua are done with in situ data collection from ships and real time coastal AERONET-OC sites. The above activities, product evaluation and tracking of channel stability, are being contributed to the JPSS Team to evaluate the overall mission, including calibration and inter-satellite product consistency. Initial NPP VIIRS ocean bio-optical products are demonstrated with other ocean color satellites.

9 citations


Cited by
More filters
Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

01 Jan 2012
TL;DR: In this paper, the authors used the RAPID-watch 26˚N observations of the AMOC strength and vertical structure, reviewed by scientific panels such as the IPCC, inform studies of impacts of climate change on both national and international levels.
Abstract: The UK has passed legislation that introduces the world’s first long-term legally binding framework to tackle the dangers of climate change (The Climate Change Act 20084). The act requires Government to set carbon budgets, which are limits on greenhouse gas emissions in the UK for consecutive five year periods. Models analysed in IPCC AR4 have a range of 0-60% for an AMOC decrease over the next 100 years. The RAPID-WATCH 26˚N observations provide the only continuous measurements of the AMOC strength and vertical structure, and are thus a vital monitoring tool for this key climate variable'. Analysis of the PSMSL data set, reviewed by scientific panels such as the IPCC, inform studies of impacts of climate change on both national and international levels (e.g. UK Marine Climate Change Impacts Partnership (MCCIP), UK Climate Impacts Programme (UKCIP), UK Foresight Flood and Coastal Defence Review, Charting Progress and Charting Progress 2, IPCC Working Group II).

579 citations

Journal ArticleDOI
TL;DR: An overview of the main characteristics and current status of the EnMAP mission is provided, which will contribute to the development and exploitation of spaceborne imaging spectroscopy applications by making high-quality data freely available to scientific users worldwide.
Abstract: Imaging spectroscopy, also known as hyperspectral remote sensing, is based on the characterization of Earth surface materials and processes through spectrally-resolved measurements of the light interacting with matter. The potential of imaging spectroscopy for Earth remote sensing has been demonstrated since the 1980s. However, most of the developments and applications in imaging spectroscopy have largely relied on airborne spectrometers, as the amount and quality of space-based imaging spectroscopy data remain relatively low to date. The upcoming Environmental Mapping and Analysis Program (EnMAP) German imaging spectroscopy mission is intended to fill this gap. An overview of the main characteristics and current status of the mission is provided in this contribution. The core payload of EnMAP consists of a dual-spectrometer instrument measuring in the optical spectral range between 420 and 2450 nm with a spectral sampling distance varying between 5 and 12 nm and a reference signal-to-noise ratio of 400:1 in the visible and near-infrared and 180:1 in the shortwave-infrared parts of the spectrum. EnMAP images will cover a 30 km-wide area in the across-track direction with a ground sampling distance of 30 m. An across-track tilted observation capability will enable a target revisit time of up to four days at the Equator and better at high latitudes. EnMAP will contribute to the development and exploitation of spaceborne imaging spectroscopy applications by making high-quality data freely available to scientific users worldwide.

512 citations

Journal ArticleDOI
TL;DR: An overview of the state of the art in atmospheric correction algorithms is provided, recent advances are highlighted and the possible potential for hyperspectral data to address the current challenges is discussed.
Abstract: Accurate correction of the corrupting effects of the atmosphere and the water’s surface are essential in order to obtain the optical, biological and biogeochemical properties of the water from satellite-based multi- and hyper-spectral sensors. The major challenges now for atmospheric correction are the conditions of turbid coastal and inland waters and areas in which there are strongly-absorbing aerosols. Here, we outline how these issues can be addressed, with a focus on the potential of new sensor technologies and the opportunities for the development of novel algorithms and aerosol models. We review hardware developments, which will provide qualitative and quantitative increases in spectral, spatial, radiometric and temporal data of the Earth, as well as measurements from other sources, such as the Aerosol Robotic Network for Ocean Color (AERONET-OC) stations, bio-optical sensors on Argo (Bio–Argo) floats and polarimeters. We provide an overview of the state of the art in atmospheric correction algorithms, highlight recent advances and discuss the possible potential for hyperspectral data to address the current challenges.

490 citations

Journal ArticleDOI
TL;DR: In this paper, a multispectral expert system used a neural network approach to provide Rapid Response thickness class maps using a spectral library approach based on the shape and depth of near infrared spectral absorption features.

432 citations