scispace - formally typeset
Search or ask a question
Author

C. E. Allison

Bio: C. E. Allison is an academic researcher from Commonwealth Scientific and Industrial Research Organisation. The author has contributed to research in topics: Firn & Ice core. The author has an hindex of 21, co-authored 37 publications receiving 2729 citations. Previous affiliations of C. E. Allison include Cooperative Research Centre & CSIRO Marine and Atmospheric Research.

Papers
More filters
Journal ArticleDOI
01 Apr 1999-Tellus B
TL;DR: In this paper, the stable carbon isotope ratio in air extracted from Antarctic ice core and firn samples was measured and the same samples were previously used by Etheridge and co-workers to construct a high precision 1000-year record of atmospheric CO 2 concentration, featuring a close link between the ice and modern records and high time resolution.
Abstract: We present measurements of the stable carbon isotope ratio in air extracted from Antarctic ice core and firn samples. The same samples were previously used by Etheridge and co-workers to construct a high precision 1000-year record of atmospheric CO 2 concentration, featuring a close link between the ice and modern records and high-time resolution. Here, we start by confirming the trend in the Cape Grim in situ δ 13 C record from 1982 to 1996, and extend it back to 1978 using the Cape Grim Air Archive. The firn air δ 13 C agrees with the Cape Grim record, but only after correction for gravitational separation at depth, for diffusion effects associated with disequilibrium between the atmosphere and firm, and allowance for a latidudinal gradient in δ 13 C between Cape Grim and the Antarctic coast. Complex calibration strategies are required to cope with several additional systematic influences on the ice core δ 13 C record. Errors are assigned to each ice core value to reflect statistical and systematic biases (between ± 0.025‰ and ± 0.07‰); uncertainties (of up to ± 0.05‰) between core-versus-core, ice-versus-firn and firn-versus-troposphere are described separately. An almost continuous atmospheric history of δ 13 C over 1000 years results, exhibiting significant decadal-to-century scale variability unlike that from earlier proxy records. The decrease in δ 13 C from 1860 to 1960 involves a series of steps confirming enhanced sensitivity of δ 13 C to decadal timescale-forcing, compared to the CO 2 record. Synchronous with a ‘‘Little Ice Age’′ CO 2 decrease, an enhancement of δ 13 C implies a terrestrial response to cooler temperatures. Between 1200 AD and 1600 AD, the atmospheric δ 13 C appear stable. DOI: 10.1034/j.1600-0889.1999.t01-1-00005.x

712 citations

Journal ArticleDOI
01 Jan 1995-Nature
TL;DR: In this paper, the authors present measurements of δ 13C made at several stations in the Northern and Southern hemispheres over the past decade and find that the large and continuing decrease in CO2 growth starting in 19886 involves increases in both terrestrial and oceanic uptake.
Abstract: CHANGES in the carbon isotope ratio (δ13C) of atmospheric CO2 can be used in global carbon-cycle models1–5 to elucidate the relative roles of oceanic and terrestrial uptake of fossil-fuel CO2. Here we present measurements of δ 13C made at several stations in the Northern and Southern hemispheres over the past decade. Focusing on the highest-quality data from Cape Grim (41° S), which also provide the longest continuous record, we observe a gradual decrease in δ13C from 1982 to 1993, but with a pronounced flattening from 1988 to 1990. There is an inverse relationship between CO2 growth rate6 and El Nino/Southern Oscillation (ENSO) events which is not reflected in the isotope record. Thus, for the ENSO events in 1982, 1986 and 1991–92, we deduce that net ocean uptake of CO2 increased, whereas during La Nina events, when equatorial sea surface temperatures are lower, upwelling of carbon-rich water increases the release of CO2 from the oceans. The flattening of the trend from 1988 to 1990 appears to involve the terrestrial carbon cycle, but we cannot yet ascribe firm causes. We find that the large and continuing decrease in CO2 growth starting in 19886 involves increases in both terrestrial and oceanic uptake, the latter persisting through 1992.

480 citations

Journal ArticleDOI
TL;DR: In this paper, a major fraction of the variability is consistent with two emission pulses coinciding with large biomass burning events in tropical and boreal regions, and observations of unusually high levels of combustion products in the overlying troposphere at these times.
Abstract: [1] High-precision, multispecies measurements of flask air samples since 1992 from CSIRO's global sampling network reveal strong correlation among interannual growth rate variations of CO2 and its δ13C, H2, CH4, and CO. We show that a major fraction of the variability is consistent with two emission pulses coinciding with large biomass burning events in 1994/1995 and 1997/1998 in tropical and boreal regions, and observations of unusually high levels of combustion products in the overlying troposphere at these times. Implied pulse strengths and multispecies emission ratios are not consistent with any other single process, but do not exclude possible contributions from covarying processes that are linked through climatic forcing. Comparison of CO2 with its δ13C indicates that most of the CO2 variation is from terrestrial exchange, but does not distinguish forcing by biomass burning from imbalance in photosynthesis/respiration of terrestrial ecosystems. Partitioning of terrestrial CO2 fluxes is constrained by H2, CH4, and CO, all of which are products of biomass burning but which have no direct link to net respiration of CO2. While CO is a strong indicator of biomass burning, its short lifetime prevents it from usefully constraining the magnitude of CO2 emissions. If the H2 and CH4 variations were dominated by biomass burning, they would imply associated carbon emissions in excess of mean annual levels of other years, of 0.6–3.5 and 0.8–3.7 Pg C for 1994/1995 and 1997/1998, respectively. The large range in emission estimates mainly reflects uncertainty in H2/CO2 and CH4/CO2 emission ratios of fires in these years.

323 citations

Journal ArticleDOI
29 Sep 2011-Nature
TL;DR: It is suggested that the redistribution of moisture and rainfall in the tropics during an El Niño increases the 18O/16O ratio of precipitation and plant water, and that this signal is then passed on to atmospheric CO2 by biosphere–atmosphere gas exchange.
Abstract: Quantifying global-scale carbon assimilation by plants, or gross primary production (GPP), has been difficult because there are no direct measures at scales greater than the leaf level. An analysis of nearly 30 years of unpublished records of the oxygen isotope (18O/16O) composition of atmospheric carbon dioxide from sampling sites worldwide has provided a means of estimating the GPP that is not reliant on modelling. The data reveal previously unrecognized interannual fluctuations that are driven by El Nio climate events. The effect propagates from the tropics to higher latitudes through the tropical hydrological cycle. Recovery from El Nio events is rapid, implying a shorter turnover time for CO2 than is generally assumed, and suggests a best-guess figure for global GPP of 150175 petagrams of carbon per year, rather than the current estimate of 120 petagrams.

211 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new measurements of δ13C of CO2 extracted from a high-resolution ice core from Law Dome (East Antarctica), together with firn measurements performed at Law Dome and South Pole, covering the last 150 years.
Abstract: [1] We present new measurements of δ13C of CO2 extracted from a high-resolution ice core from Law Dome (East Antarctica), together with firn measurements performed at Law Dome and South Pole, covering the last 150 years. Our analysis is motivated by the need to better understand the role and feedback of the carbon (C) cycle in climate change, by advances in measurement methods, and by apparent anomalies when comparing ice core and firn air δ13C records from Law Dome and South Pole. We demonstrate improved consistency between Law Dome ice, South Pole firn, and the Cape Grim (Tasmania) atmospheric δ13C data, providing evidence that our new record reliably extends direct atmospheric measurements back in time. We also show a revised version of early δ13C measurements covering the last 1000 years, with a mean preindustrial level of −6.50‰. Finally, we use a Kalman Filter Double Deconvolution to infer net natural CO2 fluxes between atmosphere, ocean, and land, which cause small δ13C deviations from the predominant anthropogenically induced δ13C decrease. The main features found from the previous δ13C record are confirmed, including the ocean as the dominant cause for the 1940 A.D. CO2 leveling. Our new record provides a solid basis for future investigation of the causes of decadal to centennial variations of the preindustrial atmospheric CO2 concentration. Those causes are of potential significance for predicting future CO2 levels and when attempting atmospheric verification of recent and future global carbon emission mitigation measures through Coupled Climate Carbon Cycle Models.

176 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a discrepancy of approximately 350 × 1015 g (or Pg) of C in two recent estimates of soil carbon reserves worldwide is evaluated using the geo-referenced database developed for the World Inventory of Soil Emission Potentials (WISE) project.
Abstract: Summary The soil is important in sequestering atmospheric CO2 and in emitting trace gases (e.g. CO2, CH4 and N2O) that are radiatively active and enhance the ‘greenhouse’ effect. Land use changes and predicted global warming, through their effects on net primary productivity, the plant community and soil conditions, may have important effects on the size of the organic matter pool in the soil and directly affect the atmospheric concentration of these trace gases. A discrepancy of approximately 350 × 1015 g (or Pg) of C in two recent estimates of soil carbon reserves worldwide is evaluated using the geo-referenced database developed for the World Inventory of Soil Emission Potentials (WISE) project. This database holds 4353 soil profiles distributed globally which are considered to represent the soil units shown on a 1/2° latitude by 1/2° longitude version of the corrected and digitized 1:5 M FAO–UNESCO Soil Map of the World. Total soil carbon pools for the entire land area of the world, excluding carbon held in the litter layer and charcoal, amounts to 2157–2293 Pg of C in the upper 100 cm. Soil organic carbon is estimated to be 684–724 Pg of C in the upper 30 cm, 1462–1548 Pg of C in the upper 100 cm, and 2376–2456 Pg of C in the upper 200 cm. Although deforestation, changes in land use and predicted climate change can alter the amount of organic carbon held in the superficial soil layers rapidly, this is less so for the soil carbonate carbon. An estimated 695–748 Pg of carbonate-C is held in the upper 100 cm of the world's soils. Mean C: N ratios of soil organic matter range from 9.9 for arid Yermosols to 25.8 for Histosols. Global amounts of soil nitrogen are estimated to be 133–140 Pg of N for the upper 100 cm. Possible changes in soil organic carbon and nitrogen dynamics caused by increased concentrations of atmospheric CO2 and the predicted associated rise in temperature are discussed.

3,163 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step.
Abstract: . New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997–2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997–2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 Pg C year−1 with significant interannual variability during 1997–2001 (2.8 Pg C year−1 in 1998 and 1.6 Pg C year−1 in 2001). Globally, emissions during 2002–2007 were relatively constant (around 2.1 Pg C year−1) before declining in 2008 (1.7 Pg C year−1) and 2009 (1.5 Pg C year−1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002–2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001–2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C year−1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series.

2,494 citations

Journal ArticleDOI
24 Apr 2009-Science
TL;DR: What is known and what is needed to develop a holistic understanding of the role of fire in the Earth system are reviewed, particularly in view of the pervasive impact of fires and the likelihood that they will become increasingly difficult to control as climate changes.
Abstract: Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

2,365 citations

Journal Article
TL;DR: Denman et al. as discussed by the authors presented the Couplings between changes in the climate system and biogeochemistry Coordinating Lead Authors: Kenneth L. Denman (Canada), Guy Brasseur (USA, Germany), Amnat Chidthaisong (Thailand), Philippe Ciais (France), Peter M. Cox (UK), Robert E. Austin (USA), D.B. Wofsy (USA) and Xiaoye Zhang (China).
Abstract: Couplings Between Changes in the Climate System and Biogeochemistry Coordinating Lead Authors: Kenneth L. Denman (Canada), Guy Brasseur (USA, Germany) Lead Authors: Amnat Chidthaisong (Thailand), Philippe Ciais (France), Peter M. Cox (UK), Robert E. Dickinson (USA), Didier Hauglustaine (France), Christoph Heinze (Norway, Germany), Elisabeth Holland (USA), Daniel Jacob (USA, France), Ulrike Lohmann (Switzerland), Srikanthan Ramachandran (India), Pedro Leite da Silva Dias (Brazil), Steven C. Wofsy (USA), Xiaoye Zhang (China) Contributing Authors: D. Archer (USA), V. Arora (Canada), J. Austin (USA), D. Baker (USA), J.A. Berry (USA), R. Betts (UK), G. Bonan (USA), P. Bousquet (France), J. Canadell (Australia), J. Christian (Canada), D.A. Clark (USA), M. Dameris (Germany), F. Dentener (EU), D. Easterling (USA), V. Eyring (Germany), J. Feichter (Germany), P. Friedlingstein (France, Belgium), I. Fung (USA), S. Fuzzi (Italy), S. Gong (Canada), N. Gruber (USA, Switzerland), A. Guenther (USA), K. Gurney (USA), A. Henderson-Sellers (Switzerland), J. House (UK), A. Jones (UK), C. Jones (UK), B. Karcher (Germany), M. Kawamiya (Japan), K. Lassey (New Zealand), C. Le Quere (UK, France, Canada), C. Leck (Sweden), J. Lee-Taylor (USA, UK), Y. Malhi (UK), K. Masarie (USA), G. McFiggans (UK), S. Menon (USA), J.B. Miller (USA), P. Peylin (France), A. Pitman (Australia), J. Quaas (Germany), M. Raupach (Australia), P. Rayner (France), G. Rehder (Germany), U. Riebesell (Germany), C. Rodenbeck (Germany), L. Rotstayn (Australia), N. Roulet (Canada), C. Sabine (USA), M.G. Schultz (Germany), M. Schulz (France, Germany), S.E. Schwartz (USA), W. Steffen (Australia), D. Stevenson (UK), Y. Tian (USA, China), K.E. Trenberth (USA), T. Van Noije (Netherlands), O. Wild (Japan, UK), T. Zhang (USA, China), L. Zhou (USA, China) Review Editors: Kansri Boonpragob (Thailand), Martin Heimann (Germany, Switzerland), Mario Molina (USA, Mexico) This chapter should be cited as: Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S Ramachandran, P.L. da Silva Dias, S.C. Wofsy and X. Zhang, 2007: Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

2,208 citations