scispace - formally typeset
Search or ask a question
Author

C. Enkrich

Other affiliations: Deutsche Forschungsgemeinschaft
Bio: C. Enkrich is an academic researcher from Karlsruhe Institute of Technology. The author has contributed to research in topics: Metamaterial & Split-ring resonator. The author has an hindex of 12, co-authored 23 publications receiving 5455 citations. Previous affiliations of C. Enkrich include Deutsche Forschungsgemeinschaft.

Papers
More filters
Journal ArticleDOI
19 Nov 2004-Science
TL;DR: The measured optical spectra of the nanofabricated gold structures come very close to the theoretical expectations and additional numerical simulations show that the structures exhibit a frequency range with negative permeability for a beam configuration in which the magnetic field couples to the LC resonance.
Abstract: An array of single nonmagnetic metallic split rings can be used to implement a magnetic resonance, which arises from an inductor-capacitor circuit (LC) resonance, at 100-terahertz frequency. The excitation of the LC resonance in the normal-incidence geometry used in our experiments occurs through the coupling of the electric field of the incident light to the capacitance. The measured optical spectra of the nanofabricated gold structures come very close to the theoretical expectations. Additional numerical simulations show that our structures exhibit a frequency range with negative permeability for a beam configuration in which the magnetic field couples to the LC resonance. Together with an electric response that has negative permittivity, this can lead to materials with a negative index of refraction.

1,448 citations

Journal ArticleDOI
TL;DR: This work identifies a novel higher-order magnetic resonance at around 370 THz (800 nm wavelength) that evolves out of the Mie resonance for oblique incidence and shows that the structures allow for a negative magnetic permeability.
Abstract: Arrays of gold split rings with a 50-nm minimum feature size and with an LC resonance at 200 THz frequency (1.5 microm wavelength) are fabricated. For normal-incidence conditions, they exhibit a pronounced fundamental magnetic mode, arising from a coupling via the electric component of the incident light. For oblique incidence, a coupling via the magnetic component is demonstrated as well. Moreover, we identify a novel higher-order magnetic resonance at around 370 THz (800 nm wavelength) that evolves out of the Mie resonance for oblique incidence. Comparison with theory delivers good agreement and also shows that the structures allow for a negative magnetic permeability.

789 citations

Journal ArticleDOI
12 May 2006-Science
TL;DR: This work investigated the propagation of femtosecond laser pulses through a metamaterial that has a negative index of refraction for wavelengths around 1.5 micrometers and directly inferred the phase time delay from the interference fringes of a Michelson interferometer.
Abstract: We investigated the propagation of femtosecond laser pulses through a metamaterial that has a negative index of refraction for wavelengths around 1.5 micrometers. From the interference fringes of a Michelson interferometer with and without the sample, we directly inferred the phase time delay. From the pulse-envelope shift, we determined the group time delay. In a spectral region, phase and group velocity are negative simultaneously. This means that both the carrier wave and the pulse envelope peak of the output pulse appear at the rear side of the sample before their input pulse counterparts have entered the front side of the sample.

758 citations

Journal ArticleDOI
28 Jul 2006-Science
TL;DR: Second-harmonic generation from metamaterials composed of split-ring resonators excited at 1.5-micrometer wavelength is observed, consistent with calculations based on the magnetic component of the Lorentz force exerted on metal electrons.
Abstract: We observe second-harmonic generation from metamaterials composed of split-ring resonators excited at 1.5-micrometer wavelength. Much larger signals are detected when magnetic-dipole resonances are excited, as compared with purely electric-dipole resonances. The experiments are consistent with calculations based on the magnetic component of the Lorentz force exerted on metal electrons-an intrinsic second-harmonic generation mechanism that plays no role in natural materials. This unusual mechanism becomes relevant in our work as a result of the enhancement and the orientation of the local magnetic fields associated with the magnetic-dipole resonances of the split-ring resonators.

675 citations

Journal ArticleDOI
TL;DR: To the best of the knowledge, this is the best figure of merit reported for any negative-index photonic metamaterial to date.
Abstract: We fabricate and characterize a low-loss silver-based negative-index metamaterial based on the design of a recent theoretical proposal. Comparing the measured transmittance and reflectance spectra with theory reveals good agreement. We retrieve a real part of the refractive index of Re(n)= -2 around 1.5 microm wavelength. The maximum of the ratio of the real to the imaginary part of the refractive index is about three at a spectral position where Re(n)= -1. To the best of our knowledge, this is the best figure of merit reported for any negative-index photonic metamaterial to date.

517 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Abstract: The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

8,028 citations

Journal ArticleDOI
23 Jun 2006-Science
TL;DR: This work shows how electromagnetic fields can be redirected at will and proposes a design strategy that has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.
Abstract: Using the freedom of design that metamaterials provide, we show how electromagnetic fields can be redirected at will and propose a design strategy. The conserved fields-electric displacement field D, magnetic induction field B, and Poynting vector B-are all displaced in a consistent manner. A simple illustration is given of the cloaking of a proscribed volume of space to exclude completely all electromagnetic fields. Our work has relevance to exotic lens design and to the cloaking of objects from electromagnetic fields.

7,811 citations

Journal ArticleDOI
TL;DR: This work fabricate, characterize, and analyze a MM absorber with a slightly lower predicted A(omega) of 96%.
Abstract: We present the design for an absorbing metamaterial (MM) with near unity absorbance A(omega). Our structure consists of two MM resonators that couple separately to electric and magnetic fields so as to absorb all incident radiation within a single unit cell layer. We fabricate, characterize, and analyze a MM absorber with a slightly lower predicted A(omega) of 96%. Unlike conventional absorbers, our MM consists solely of metallic elements. The substrate can therefore be optimized for other parameters of interest. We experimentally demonstrate a peak A(omega) greater than 88% at 11.5 GHz.

5,550 citations

Journal ArticleDOI
TL;DR: This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam.
Abstract: Metamaterials are artificially fabricated materials that allow for the control of light and acoustic waves in a manner that is not possible in nature. This Review covers the recent developments in the study of so-called metasurfaces, which offer the possibility of controlling light with ultrathin, planar optical components. Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.

4,613 citations

Journal ArticleDOI
23 Jun 2006-Science
TL;DR: A general recipe for the design of media that create perfect invisibility within the accuracy of geometrical optics is developed, which can be applied to escape detection by other electromagnetic waves or sound.
Abstract: An invisibility device should guide light around an object as if nothing were there, regardless of where the light comes from. Ideal invisibility devices are impossible, owing to the wave nature of light. This study develops a general recipe for the design of media that create perfect invisibility within the accuracy of geometrical optics. The imperfections of invisibility can be made arbitrarily small to hide objects that are much larger than the wavelength. With the use of modern metamaterials, practical demonstrations of such devices may be possible. The method developed here can also be applied to escape detection by other electromagnetic waves or sound.

3,850 citations