scispace - formally typeset
Search or ask a question
Author

C. G. Van de Walle

Bio: C. G. Van de Walle is an academic researcher from University of California, Santa Barbara. The author has contributed to research in topics: Band gap & Electronic band structure. The author has an hindex of 51, co-authored 132 publications receiving 9587 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The UWBG semiconductor materials, such as high Al‐content AlGaN, diamond and Ga2O3, advanced in maturity to the point where realizing some of their tantalizing advantages is a relatively near‐term possibility.
Abstract: J. Y. Tsao,* S. Chowdhury, M. A. Hollis,* D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar,* S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons

785 citations

Journal ArticleDOI
TL;DR: In this paper, the role of oxygen vacancies and various impurities in the electrical and optical properties of the transparent conducting oxide β-Ga2O3 was investigated using hybrid functionals.
Abstract: Using hybrid functionals we have investigated the role of oxygen vacancies and various impurities in the electrical and optical properties of the transparent conducting oxide β-Ga2O3. We find that oxygen vacancies are deep donors, and thus cannot explain the unintentional n-type conductivity. Instead, we attribute the conductivity to common background impurities such as silicon and hydrogen. Monatomic hydrogen has low formation energies and acts as a shallow donor in both interstitial and substitutional configurations. We also explore other dopants, where substitutional forms of Si, Ge, Sn, F, and Cl are shown to behave as shallow donors.

713 citations

Journal ArticleDOI
TL;DR: In this paper, the nitrogen-vacancy (NV-1) center is identified as a quantum-mechanical defect in diamond and a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems.
Abstract: Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV-1) center stands out for its robustness—its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV-1 center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

562 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of carbon on the electrical and optical properties of GaN were investigated using hybrid functional calculations, and it was shown that carbon substituting for N (CN) has an ionization energy of 0.90 eV.
Abstract: Using hybrid functional calculations we investigate the effects of carbon on the electrical and optical properties of GaN. In contrast to the currently accepted view that C substituting for N (CN) is a shallow acceptor, we find that CN has an ionization energy of 0.90 eV. Our calculated absorption and emission lines also indicate that CN is a likely source for the yellow luminescence that is frequently observed in GaN, solving the longstanding puzzle of the nature of the C-related defect involved in yellow emission. Our results suggest that previous experimental data, analyzed under the assumption that CN acts as a shallow acceptor, should be re-examined.

536 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic and structural properties of the oxygen vacancy were studied using generalized Kohn-Sham theory with the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation.
Abstract: The electronic and structural properties of the oxygen vacancy $({V}_{\text{O}})$ in rutile ${\text{TiO}}_{2}$ are studied using generalized Kohn-Sham theory with the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional for exchange and correlation. The HSE approach corrects the band gap and allows for a proper description of defects with energy levels close to the conduction band. According to the HSE calculations, ${V}_{\text{O}}$ is a shallow donor for which the $+2$ charge state is lower in energy than the neutral and $+1$ charge states for all Fermi-level positions in the band gap. The formation energy of ${V}_{\text{O}}^{2+}$ is relatively low in $n$-type ${\text{TiO}}_{2}$ under O-poor conditions but it rapidly increases with the oxygen chemical potential. This is consistent with experimental observations where the electrical conductivity decreases with oxygen partial pressure.

506 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive, up-to-date compilation of band parameters for the technologically important III-V zinc blende and wurtzite compound semiconductors.
Abstract: We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials. Emphasizing the quantities required for band structure calculations, we tabulate the direct and indirect energy gaps, spin-orbit, and crystal-field splittings, alloy bowing parameters, effective masses for electrons, heavy, light, and split-off holes, Luttinger parameters, interband momentum matrix elements, and deformation potentials, including temperature and alloy-composition dependences where available. Heterostructure band offsets are also given, on an absolute scale that allows any material to be aligned relative to any other.

6,349 citations

Journal ArticleDOI
05 Mar 2018-Nature
TL;DR: The realization of intrinsic unconventional superconductivity is reported—which cannot be explained by weak electron–phonon interactions—in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle.
Abstract: The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

5,613 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations