scispace - formally typeset
Search or ask a question
Author

C. Gordon Fullerton

Bio: C. Gordon Fullerton is an academic researcher from Neil A. Armstrong Flight Research Center. The author has contributed to research in topics: Flight simulator & Fly-by-wire. The author has an hindex of 5, co-authored 6 publications receiving 185 citations.

Papers
More filters
01 Sep 1996
TL;DR: Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure and was used to recover from a severe upset condition, descend, and land.
Abstract: A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

49 citations

Book
02 Aug 2013
TL;DR: In this paper, a history of accidents or incidents in which some or all flight controls were lost, manual TOC results for a wide range of airplanes from simulation and flight, and suggested techniques for flying with throttles only and making a survivable landing.
Abstract: If normal aircraft flight controls are lost, emergency flight control may be attempted using only engines thrust. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. Flight test and simulation results on many airplanes have shown that pilot manipulation of throttles is usually adequate to maintain up-and-away flight, but is most often not capable of providing safe landings. There are techniques that will improve control and increase the chances of a survivable landing. This paper reviews the principles of throttles-only control (TOC), a history of accidents or incidents in which some or all flight controls were lost, manual TOC results for a wide range of airplanes from simulation and flight, and suggested techniques for flying with throttles only and making a survivable landing.

39 citations

01 Oct 1997
TL;DR: An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane as discussed by the authors.
Abstract: An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

39 citations

01 Sep 1991
TL;DR: In this paper, a study was conducted of the capability and techniques for emergency flight control of a multi-engine crippled aircraft, with most or all of the flight control system inoperative, may use engine thrust for control.
Abstract: A multiengine crippled aircraft, with most or all of the flight control system inoperative, may use engine thrust for control. A study was conducted of the capability and techniques for emergency flight control. Included were light twin engine piston powered airplanes, an executive jet transport, commercial jet transports, and a high performance fighter. Piloted simulations of the B-720, B-747, B-727, MD-11, C-402, and F-15 airplanes were studied, and the Lear 24, PA-30, and F-15 airplanes were flight tested. All aircraft showed some control capability with throttles and could be kept under control in up-and-away flight for an extended period of time. Using piloted simulators, landings with manual throttles-only control were extremely difficult. However, there are techniques that improve the chances of making a survivable landing. In addition, augmented control systems provide major improvements in control capability and make repeatable landings possible. Control capabilities and techniques are discussed.

37 citations

01 Jun 1993
TL;DR: The principles of throttle-only control, the F-15 airplane, the augmented system, and the flight results including landing approaches with throttles- only control to within 10 ft of the ground are discussed.
Abstract: A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.

21 citations


Cited by
More filters
Journal ArticleDOI
06 Jan 2012
TL;DR: In this article, a survey of model-based fault detection methods for aerospace systems is presented, focusing on those methods that are applicable to aerospace systems and highlighting the characteristics of aerospace models, generic non-linear dynamical modelling from flight mechanics is recalled and a unifying representation of sensor and actuator faults is presented.
Abstract: This survey of model-based fault diagnosis focuses on those methods that are applicable to aerospace systems. To highlight the characteristics of aerospace models, generic non-linear dynamical modelling from flight mechanics is recalled and a unifying representation of sensor and actuator faults is presented. An extensive bibliographical review supports a description of the key points of fault detection methods that rely on analytical redundancy. The approaches that best suit the constraints of the field are emphasized and recommendations for future developments in in-flight fault diagnosis are provided.

235 citations

Proceedings ArticleDOI
12 Jul 2018
TL;DR: The emergence of distributed electric propulsion (DEP) concepts for aircraft systems has enabled new capabilities in the overall efficiency, capabilities, and robustness of future air vehicles and provides flexible operational capabilities far beyond those of current systems.
Abstract: The emergence of distributed electric propulsion (DEP) concepts for aircraft systems has enabled new capabilities in the overall efficiency, capabilities, and robustness of future air vehicles Distributed electric propulsion systems feature the novel approach of utilizing electrically-driven propulsors which are only connected electrically to energy sources or power-generating devices As a result, propulsors can be placed, sized, and operated with greater flexibility to leverage the synergistic benefits of aero-propulsive coupling and provide improved performance over more traditional designs A number of conventional aircraft concepts that utilize distributed electric propulsion have been developed, along with various short and vertical takeoff and landing platforms Careful integration of electrically-driven propulsors for boundary-layer ingestion can allow for improved propulsive efficiency and wake-filling benefits The placement and configuration of propulsors can also be used to mitigate the trailing vortex system of a lifting surface or leverage increases in dynamic pressure across blown surfaces for increased lift performance Additionally, the thrust stream of distributed electric propulsors can be utilized to enable new capabilities in vehicle control, including reducing requirements for traditional control surfaces and increasing tolerance of the vehicle control system to engine-out or propulsor-out scenarios If one or more turboelectric generators and multiple electric fans are used, the increased effective bypass ratio of the whole propulsion system can also enable lower community noise during takeoff and landing segments of flight and higher propulsive efficiency at all conditions Furthermore, the small propulsors of a DEP system can be installed to leverage an acoustic shielding effect by the airframe, which can further reduce noise signatures The rapid growth in flight-weight electrical systems and power architectures has provided new enabling technologies for future DEP concepts, which provide flexible operational capabilities far beyond those of current systems While a number of integration challenges exist, DEP is a disruptive concept that can lead to unprecedented improvements in future aircraft designs

170 citations

Journal ArticleDOI
TL;DR: In this paper, a neural network hybrid direct-indirect adaptive flight control is developed for the stability augmentation control of the damaged aircraft. But, this approach is limited to a single aircraft.
Abstract: This paper presents a recent study to investigate flight dynamics and adaptive control methods for stability and control recovery of a damaged generic transport aircraft. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of the damaged aircraft. Flight dynamics for a general aircraft are developed to account for changes in aerodynamics, mass properties, and the center of gravity that can compromise the stability of the damaged aircraft An iterative trim analysis is developed to compute incremental trim states. A neural network hybrid direct-indirect adaptive flight control is developed for the stability augmentation control of the damaged aircraft. The proposed method performs an online estimation of damaged plant dynamics to improve the command tracking performance in conjunction with a direct adaptive controller. The plant estimation is based on two approaches: 1) an indirect adaptive law derived from the Lyapunov stability theory to ensure that the tracking error is bounded, and 2) a recursive least-squares method that minimizes the modeling error. Simulations show that the hybrid adaptive controller can provide a significant improvement in the tracking performance over a direct adaptive controller working alone.

168 citations

Proceedings ArticleDOI
21 Aug 2006
TL;DR: In this article, the authors present a description of a large transp ort aircraft simulation benchmark that includes a suitable set of assessment criteria for the integrated evaluation of fault tolerant flight control systems (FTFC).
Abstract: This paper presents a description of a large transp ort aircraft simulation benchmark that includes a suitable set of assessment criteria , for the integrated evaluation of fault tolerant flight control systems (FTFC). These syste ms consist of a combination of novel fault detection, isolation (FDI) and reconfigurable contr ol schemes. In 2004, a research group on Fault Tolerant Control, comprising a collaboration of nine European partners from industry, universities and research institutions, w as established within the framework of the Group for Aeronautical Research and Technology in Europe (GARTEUR) co-operation program. The aim of the research group, Flight Mechanics Action Group FM-AG(16), is to demonstrate the capability and viability of modern FTFC schemes when applied to a realistic, nonlinear design problem and to assess t heir capability to improve aircraft survivability. The test scenarios that are an integ ral part of the benchmark were selected to provide challenging assessment criteria to evaluate the effectiveness and potential of the FTFC methods being investigated. The application of fault reconstruction and modelling techniques based on (accident) flight data, as desc ribed in this paper, has resulted in high fidelity non-linear aircraft and fault models for t he design and evaluation of modern FTFC methods.

68 citations

Proceedings ArticleDOI
01 Dec 2001
TL;DR: In this paper, an integrated neural flight and propulsion control system is described, which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures.
Abstract: This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

68 citations