scispace - formally typeset
Search or ask a question
Author

C. Grant Willson

Bio: C. Grant Willson is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Resist & Lithography. The author has an hindex of 52, co-authored 373 publications receiving 12839 citations. Previous affiliations of C. Grant Willson include University of Tennessee & University of Minnesota.


Papers
More filters
Proceedings ArticleDOI
25 Jun 1999
TL;DR: In this article, a template is created on a standard mask blank by using the patterned chromium as an etch mask to produce high-resolution relief images in the quartz.
Abstract: An alternative approach to lithography is being developed based on a dual-layer imprint scheme. This process has the potential to become a high-throughput means of producing high aspect ratio, high-resolution patterns without projection optics. In this process, a template is created on a standard mask blank by using the patterned chromium as an etch mask to produce high-resolution relief images in the quartz. The etched template and a substrate that has been coated with an organic planarization layer are brought into close proximity. A low-viscosity, photopolymerizable formulation containing organosilicon precursors is introduced into the gap between the two surfaces. The template is then brought into contact with the substrate. The solution that is trapped in the relief structures of the template is photopolymerized by exposure through the backside of the quartz template. The template is separated from the substrate, leaving a UV-curved replica of the relief structure on the planarization layer. Features smaller than 60 nm in size have been reliably produced using this imprinting process. The resolution silicon polymer images are transferred through the planarization layer by anisotropic oxygen reactive ion etching. This paper provides a progress report on our efforts to evaluate the potential of this process.

643 citations

Journal ArticleDOI
TL;DR: In this article, the current state of block copolymer lithography and key challenges and opportunities within the field are discussed, focusing on advances and issues related to thermal annealing.
Abstract: This Perspective addresses the current state of block copolymer lithography and identifies key challenges and opportunities within the field. Significant strides in experimental and theoretical thin film research have nucleated the transition of block copolymers “from lab to fab”, but outstanding questions remain about the optimal materials, processes, and analytical techniques for first-generation devices and beyond. Particular attention herein is focused on advances and issues related to thermal annealing. Block copolymers are poised to change the traditional lithographic resolution enhancement paradigm from “top-down” to “bottom-up”.

511 citations

Journal ArticleDOI
TL;DR: The fidelity of VH:VL pairs identified by this approach were validated and the method was used to sequence the repertoire of three human cell subsets—peripheral blood IgG+ B cells, peripheral plasmablasts isolated after tetanus toxoid immunization and memory B cells isolated after seasonal influenza vaccination.
Abstract: Each B-cell receptor consists of a pair of heavy and light chains. High-throughput sequencing can identify large numbers of heavy- and light-chain variable regions (V(H) and V(L)) in a given B-cell repertoire, but information about endogenous pairing of heavy and light chains is lost after bulk lysis of B-cell populations. Here we describe a way to retain this pairing information. In our approach, single B cells (>5 × 10(4) capacity per experiment) are deposited in a high-density microwell plate (125 pl/well) and lysed in situ. mRNA is then captured on magnetic beads, reverse transcribed and amplified by emulsion V(H):V(L) linkage PCR. The linked transcripts are analyzed by Illumina high-throughput sequencing. We validated the fidelity of V(H):V(L) pairs identified by this approach and used the method to sequence the repertoire of three human cell subsets-peripheral blood IgG(+) B cells, peripheral plasmablasts isolated after tetanus toxoid immunization and memory B cells isolated after seasonal influenza vaccination.

441 citations

Journal ArticleDOI
Hiroshi Ito1, C. Grant Willson1
TL;DR: In this article, a new resist system is described which undergoes spontaneous relief image formation, formulated from end capped poly(phthaladehyde), PPA, and a cationic photoinitiator such as a diaryliodonium or triarylsulfonium metal halide.
Abstract: A new resist system is described which undergoes spontaneous relief image formation. The resist is formulated from end capped poly(phthaladehyde), PPA, and a cationic photoinitiator such as a diaryliodonium or triarylsulfonium metal halide. The extreme sensitivity of the resist is the result of designing for chemical amplification. The desired amplification results from the fact that photolysis of the sensitizer generates acid which catalyzes main chain cleavage of the polyaldehyde. The uncapped polymer is thermodynamically unstable with respect to reversion to monomer at room temperature so a single acid catalyzed scission results in complete depolymerization to volatile monomer. A single radiochemical event is thereby amplified in the sense that it produces an enormous number of subsequent chemical transformations. PPA/onium salt resist films are so sensitive that exposure to low doses of e-beam, X-ray or ultraviolet radiation results in complete self development without post-exposure processing of any kind. The exposed area simply vaporizes.

394 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The radical-mediated thiol-ene reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield.
Abstract: Following Sharpless' visionary characterization of several idealized reactions as click reactions, the materials science and synthetic chemistry communities have pursued numerous routes toward the identification and implementation of these click reactions. Herein, we review the radical-mediated thiol-ene reaction as one such click reaction. This reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield. Further, the thiol-ene reaction is most frequently photoinitiated, particularly for photopolymerizations resulting in highly uniform polymer networks, promoting unique capabilities related to spatial and temporal control of the click reaction. The reaction mechanism and its implementation in various synthetic methodologies, biofunctionalization, surface and polymer modification, and polymerization are all reviewed.

3,229 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent mechanistic developments in the field of controlled/living radical polymerization (CRP) is presented, with particular emphasis on structure-reactivity correlations and "rules" for catalyst selection in ATRP, for chain transfer agent selection in reversible addition-fragmentation chain transfer (RAFT) polymerization, and for the selection of an appropriate mediating agent in stable free radical polymerisation (SFRP), including organic and transition metal persistent radicals.

2,869 citations

Journal ArticleDOI
TL;DR: In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision through a strong interaction between incident light and free electrons in the nanostructure.
Abstract: Coinage metals, such as Au, Ag, and Cu, have been important materials throughout history.1 While in ancient cultures they were admired primarily for their ability to reflect light, their applications have become far more sophisticated with our increased understanding and control of the atomic world. Today, these metals are widely used in electronics, catalysis, and as structural materials, but when they are fashioned into structures with nanometer-sized dimensions, they also become enablers for a completely different set of applications that involve light. These new applications go far beyond merely reflecting light, and have renewed our interest in maneuvering the interactions between metals and light in a field known as plasmonics.2–6 In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision. These applications are made possible through a strong interaction between incident light and free electrons in the nanostructures. With a tight control over the nanostructures in terms of size and shape, light can be effectively manipulated and controlled with unprecedented accuracy.3,7 While many new technologies stand to be realized from plasmonics, with notable examples including superlenses,8 invisible cloaks,9 and quantum computing,10,11 conventional technologies like microprocessors and photovoltaic devices could also be made significantly faster and more efficient with the integration of plasmonic nanostructures.12–15 Of the metals, Ag has probably played the most important role in the development of plasmonics, and its unique properties make it well-suited for most of the next-generation plasmonic technologies.16–18 1.1. What is Plasmonics? Plasmonics is related to the localization, guiding, and manipulation of electromagnetic waves beyond the diffraction limit and down to the nanometer length scale.4,6 The key component of plasmonics is a metal, because it supports surface plasmon polariton modes (indicated as surface plasmons or SPs throughout this review), which are electromagnetic waves coupled to the collective oscillations of free electrons in the metal. While there are a rich variety of plasmonic metal nanostructures, they can be differentiated based on the plasmonic modes they support: localized surface plasmons (LSPs) or propagating surface plasmons (PSPs).5,19 In LSPs, the time-varying electric field associated with the light (Eo) exerts a force on the gas of negatively charged electrons in the conduction band of the metal and drives them to oscillate collectively. At a certain excitation frequency (w), this oscillation will be in resonance with the incident light, resulting in a strong oscillation of the surface electrons, commonly known as a localized surface plasmon resonance (LSPR) mode.20 This phenomenon is illustrated in Figure 1A. Structures that support LSPRs experience a uniform Eo when excited by light as their dimensions are much smaller than the wavelength of the light. Figure 1 Schematic illustration of the two types of plasmonic nanostructures discussed in this article as excited by the electric field (Eo) of incident light with wavevector (k). In (A) the nanostructure is smaller than the wavelength of light and the free electrons ... In contrast, PSPs are supported by structures that have at least one dimension that approaches the excitation wavelength, as shown in Figure 1B.4 In this case, the Eo is not uniform across the structure and other effects must be considered. In such a structure, like a nanowire for example, SPs propagate back and forth between the ends of the structure. This can be described as a Fabry-Perot resonator with resonance condition l=nλsp, where l is the length of the nanowire, n is an integer, and λsp is the wavelength of the PSP mode.21,22 Reflection from the ends of the structure must also be considered, which can change the phase and resonant length. Propagation lengths can be in the tens of micrometers (for nanowires) and the PSP waves can be manipulated by controlling the geometrical parameters of the structure.23

2,421 citations

Journal ArticleDOI
TL;DR: This work has shown that coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface can be associated with surface plasmons, which have potential applications in miniaturized optical devices, sensors, and photonic circuits.
Abstract: Surface plasmons (SPs) are coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface. The growing field of research on such light -metal interactions is known as ‘plasmonics’. 1-3 This branch of research has attracted much attention due to its potential applications in miniaturized optical devices, sensors, and photonic circuits as well as in medical diagnostics and therapeutics. 4-8

2,284 citations