scispace - formally typeset
Search or ask a question
Author

C.-H. Teh

Bio: C.-H. Teh is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Velocity Moments & Method of moments (statistics). The author has an hindex of 4, co-authored 4 publications receiving 2712 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Various types of moments have been used to recognize image patterns in a number of applications and some fundamental questions are addressed, such as image-representation ability, noise sensitivity, and information redundancy.
Abstract: Various types of moments have been used to recognize image patterns in a number of applications. A number of moments are evaluated and some fundamental questions are addressed, such as image-representation ability, noise sensitivity, and information redundancy. Moments considered include regular moments, Legendre moments, Zernike moments, pseudo-Zernike moments, rotational moments, and complex moments. Properties of these moments are examined in detail and the interrelationships among them are discussed. Both theoretical and experimental results are presented. >

1,522 citations

Journal ArticleDOI
TL;DR: A parallel algorithm for detecting dominant points on a digital closed curve is presented, which leads to the observation that the performance of dominant points detection depends not only on the accuracy of the measure of significance, but also on the precise determination of the region of support.
Abstract: A parallel algorithm is presented for detecting dominant points on a digital closed curve. The procedure requires no input parameter and remains reliable even when features of multiple sizes are present on the digital curve. The procedure first determines the region of support for each point based on its local properties, then computes measures of relative significance (e.g. curvature) of each point, and finally detects dominant points by a process of nonmaximum suppression. This procedure leads to the observation that the performance of dominant points detection depends not only on the accuracy of the measure of significance, but also on the precise determination of the region of support. This solves the fundamental problem of scale factor selection encountered in various dominant point detection algorithms. The inherent nature of scale-space filtering in the procedure is addressed, and the performance of the procedure is compared to those of several other dominant point detection algorithms, using a number of examples. >

772 citations

Proceedings ArticleDOI
05 Jun 1988
TL;DR: The authors evaluate a number of moments and addresses some fundamental questions, such as image representation ability, noise sensitivity, and information redundancy, about moments used to recognize image patterns.
Abstract: Various types of moments have been used to recognize image patterns in a number of applications. The authors evaluate a number of moments and addresses some fundamental questions, such as image representation ability, noise sensitivity, and information redundancy. Moments considered include regular moments, Legendre moments, Zernike moments, pseudo-Zernike moments, rotational moments and complex moments. Properties of these moments are examined in detail, and the interrelationships among them are discussed. Both theoretical and experimental results are presented. >

496 citations

Proceedings ArticleDOI
05 Jun 1988
TL;DR: A parallel algorithm for detecting dominant points on a digital closed curve is presented and leads to an important observation that the performance of dominant points detection depends not only on the accuracy of the measure of significance, but mainly precise determination of the region of support.
Abstract: A parallel algorithm for detecting dominant points on a digital closed curve is presented. The procedure requires no input parameter and remains reliable even when features of multiple sizes are present on the digital curve. The procedure first determines the region of support for each point based on its local properties, then computes measures of relative significance (e.g. curvature) of each point, and finally detects dominant points by a process of nonmaxima suppression. This procedure leads to an important observation that the performance of dominant points detection depends not only on the accuracy of the measure of significance, but mainly precise determination of the region of support. This solves the fundamental problem of scale factor selection encountered in various dominant point detection algorithms. The inherent nature of scale-space filtering in the procedure is addressed and the performance of the procedure is compared to those of several other dominant point-detection algorithms, using a number of examples. >

17 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A systematic reconstruction-based method for deciding the highest-order ZERNike moments required in a classification problem is developed and the superiority of Zernike moment features over regular moments and moment invariants was experimentally verified.
Abstract: The problem of rotation-, scale-, and translation-invariant recognition of images is discussed. A set of rotation-invariant features are introduced. They are the magnitudes of a set of orthogonal complex moments of the image known as Zernike moments. Scale and translation invariance are obtained by first normalizing the image with respect to these parameters using its regular geometrical moments. A systematic reconstruction-based method for deciding the highest-order Zernike moments required in a classification problem is developed. The quality of the reconstructed image is examined through its comparison to the original one. The orthogonality property of the Zernike moments, which simplifies the process of image reconstruction, make the suggest feature selection approach practical. Features of each order can also be weighted according to their contribution to the reconstruction process. The superiority of Zernike moment features over regular moments and moment invariants was experimentally verified. >

1,971 citations

Journal ArticleDOI
TL;DR: This paper identifies some promising techniques for image retrieval according to standard principles and examines implementation procedures for each technique and discusses its advantages and disadvantages.

1,910 citations

Journal ArticleDOI
TL;DR: A new heuristic for feature detection is presented and, using machine learning, a feature detector is derived from this which can fully process live PAL video using less than 5 percent of the available processing time.
Abstract: The repeatability and efficiency of a corner detector determines how likely it is to be useful in a real-world application. The repeatability is important because the same scene viewed from different positions should yield features which correspond to the same real-world 3D locations. The efficiency is important because this determines whether the detector combined with further processing can operate at frame rate. Three advances are described in this paper. First, we present a new heuristic for feature detection and, using machine learning, we derive a feature detector from this which can fully process live PAL video using less than 5 percent of the available processing time. By comparison, most other detectors cannot even operate at frame rate (Harris detector 115 percent, SIFT 195 percent). Second, we generalize the detector, allowing it to be optimized for repeatability, with little loss of efficiency. Third, we carry out a rigorous comparison of corner detectors based on the above repeatability criterion applied to 3D scenes. We show that, despite being principally constructed for speed, on these stringent tests, our heuristic detector significantly outperforms existing feature detectors. Finally, the comparison demonstrates that using machine learning produces significant improvements in repeatability, yielding a detector that is both very fast and of very high quality.

1,847 citations

Book
14 Dec 2016
TL;DR: Whether you want to build simple or sophisticated vision applications, Learning OpenCV is the book any developer or hobbyist needs to get started, with the help of hands-on exercises in each chapter.
Abstract: Learning OpenCV puts you in the middle of the rapidly expanding field of computer vision. Written by the creators of the free open source OpenCV library, this book introduces you to computer vision and demonstrates how you can quickly build applications that enable computers to "see" and make decisions based on that data.The second edition is updated to cover new features and changes in OpenCV 2.0, especially the C++ interface.Computer vision is everywherein security systems, manufacturing inspection systems, medical image analysis, Unmanned Aerial Vehicles, and more. OpenCV provides an easy-to-use computer vision framework and a comprehensive library with more than 500 functions that can run vision code in real time. Whether you want to build simple or sophisticated vision applications, Learning OpenCV is the book any developer or hobbyist needs to get started, with the help of hands-on exercises in each chapter.This book includes:A thorough introduction to OpenCV Getting input from cameras Transforming images Segmenting images and shape matching Pattern recognition, including face detection Tracking and motion in 2 and 3 dimensions 3D reconstruction from stereo vision Machine learning algorithms

1,222 citations

Book
16 Jun 2008
TL;DR: An overview of invariant interest point detectors can be found in this paper, where an overview of the literature over the past four decades organized in different categories of feature extraction methods is presented.
Abstract: In this survey, we give an overview of invariant interest point detectors, how they evolvd over time, how they work, and what their respective strengths and weaknesses are. We begin with defining the properties of the ideal local feature detector. This is followed by an overview of the literature over the past four decades organized in different categories of feature extraction methods. We then provide a more detailed analysis of a selection of methods which had a particularly significant impact on the research field. We conclude with a summary and promising future research directions.

1,144 citations