scispace - formally typeset
Search or ask a question
Author

C. Ida

Bio: C. Ida is an academic researcher from Kyoto University. The author has contributed to research in topics: Dark matter & Scintillator. The author has an hindex of 8, co-authored 22 publications receiving 446 citations.

Papers
More filters
Journal ArticleDOI
S. P. Ahlen1, Niayesh Afshordi2, Niayesh Afshordi3, James Battat4, J. Billard5, Nassim Bozorgnia6, S. Burgos7, T. Caldwell8, T. Caldwell4, J. M. Carmona9, S. Cebrián9, P. Colas, T. Dafni9, E. J. Daw10, D. Dujmic4, A. Dushkin11, William Fedus4, Efrain J. Ferrer, D. Finkbeiner12, Peter H. Fisher4, J. Forbes7, T. Fusayasu13, J. Galán9, T. Gamble10, C. Ghag14, Ioannis Giomataris, Michael Gold15, Haley Louise Gomez9, M. E. Gomez16, Paolo Gondolo17, Anne M. Green18, C. Grignon5, O. Guillaudin5, C. Hagemann15, Kaori Hattori19, Shawn Wesley Henderson4, N. Higashi19, C. Ida19, F.J. Iguaz9, Andrew Inglis1, I. G. Irastorza9, Satoru Iwaki19, A. C. Kaboth4, Shigeto Kabuki19, J. Kadyk20, Nitya Kallivayalil4, H. Kubo19, Shunsuke Kurosawa19, V. A. Kudryavtsev10, T. Lamy5, Richard C. Lanza4, T. B. Lawson10, A. Lee4, E. R. Lee15, T. Lin12, D. Loomba15, Jeremy Lopez4, G. Luzón9, T. Manobu, J. Martoff21, F. Mayet5, B. Mccluskey10, E. H. Miller15, Kentaro Miuchi19, Jocelyn Monroe4, B. Morgan22, D. Muna23, A. St. J. Murphy14, Tatsuhiro Naka24, K. Nakamura19, M. Nakamura24, T. Nakano24, G.G. Nicklin10, H. Nishimura19, K. Niwa24, Sean Paling10, Joseph D. Parker19, A. Petkov7, M. Pipe10, K. Pushkin7, Matthew R. Robinson10, Arturo Rodriguez Rodriguez9, Jose Rodríguez-Quintero16, T. Sahin4, Robyn E. Sanderson4, N. Sanghi15, D. Santos5, O. Sato24, Tatsuya Sawano19, G. Sciolla4, Hiroyuki Sekiya25, Tracy R. Slatyer12, D. P. Snowden-Ifft7, N. J. C. Spooner10, A. Sugiyama26, A. Takada, M. Takahashi19, A. Takeda25, Toru Tanimori19, Kojiro Taniue19, A. Tomás9, H. Tomita1, K. Tsuchiya19, J. Turk15, E. Tziaferi10, K. Ueno19, S. E. Vahsen20, R. Vanderspek4, J D Vergados27, J.A. Villar9, H. Wellenstein11, I. Wolfe4, R. K. Yamamoto4, H. Yegoryan4 
TL;DR: The case for a dark matter detector with directional sensitivity was presented at the 2009 CYGNUS workshop on directional dark matter detection, and contributions from theorists and experimental groups in the field as mentioned in this paper.
Abstract: We present the case for a dark matter detector with directional sensitivity. This document was developed at the 2009 CYGNUS workshop on directional dark matter detection, and contains contributions from theorists and experimental groups in the field. We describe the need for a dark matter detector with directional sensitivity; each directional dark matter experiment presents their project's status; and we close with a feasibility study for scaling up to a one ton directional detector, which would cost around $150M.

224 citations

Journal ArticleDOI
TL;DR: In this article, a direction-sensitive dark matter search experiment at Kamioka underground laboratory with the NEWAGE-0.3a detector was performed, which achieved a new record of 5400 pb for 150 GeV / c 2 WIMPs.

98 citations

Journal ArticleDOI
TL;DR: NewAGE-0.3a as mentioned in this paper is a prototype direction-sensitive dark matter search detector with a gamma-ray rejection power of 8.1 ± 1.9 × 10 −6 at 100 keV/α and an energy resolution of 45% at 6 −MeV /α.

19 citations

Journal ArticleDOI
TL;DR: A LaBr3:Ce scintillator array consisting of 8 × 8 pixels, which serves as an absorber of scattered gamma rays with energies from 0.1 to 1 MeV in a Compton camera, and a Gd2SiO5: Ce (GSO:Ci) scintilla array, which is coupled to a 64-channel multi-anode PMT and measured with a single anode photomultiplier tube.
Abstract: We have developed a LaBr3:Ce scintillator array consisting of 8 × 8 pixels with a size of 5.8 mm×5.8 mm×15.0 mm, which serves as an absorber of scattered gamma rays with energies from 0.1 to 1 MeV in a Compton camera. The pixels were cut from two pieces of LaBr3:Ce crystal with a diameter of 38 mm and a length of 38 mm with full width at half-maximum (FWHM) energy resolutions of 4.1 ± 0.1% and 3.0 ± 0.1% at 356 and 662 keV, respectively, measured with a single anode photomultiplier tube (PMT). The crystal had the following volumetric uniformities: light outputs with a difference of 0.5% (standard deviation: SD) and energy resolutions with that of 2% (SD) at 356 keV. In contrast, for each pixel in the array, the average and SD FWHM energy resolutions over 64 pixels, measured with a single-anode PMT and a collimator, were 5.8 ± 0.9% at 356 keV. The array was then coupled to a 64-channel multi-anode PMT (Hamamatsu H8500), the anode pitch of which was the same as the LaBr3:Ce pixel pitch of 6.1 mm. When the 64 anodes were read out from four channels in a resistor chain by the charge division method, the FWHM energy resolution of all 64 pixels was 7.0 ± 0.5% at 662 keV, whereas that of the inner 6×6 pixels was 5.8 ± 0.4% at 662 keV. In addition, we measured a Gd2SiO5:Ce (GSO:Ce) scintillator array consisting of 8×8 pixels with a size of 5.9 mm×5.9 mm×13.0 mm to compare its performance with that of the LaBr3:Ce array. The FWHM energy resolution of all 64 GSO:Ce pixels was 10.8 ± 0.3% at 662 keV. With these energy resolutions, FWHM angular resolutions of the Compton camera using the LaBr3:Ce and GSO:Ce arrays are expected to be 4.6° and 5.3°, respectively, at 662 keV.

16 citations

Journal ArticleDOI
TL;DR: In this paper, a new type high spatial resolution radiation detector based on a UV scintillator+a UV imaging gas photomultiplier is presented, which consists of a 10 cm×10 cm μPIC, 2 GEMs and a semitransparent CsI photocathode deposited on a MgF2 window.
Abstract: A new type high spatial resolution radiation detector based on a UV scintillator+a UV imaging gas photomultiplier is presented. The prototype UV detector consists of a 10 cm×10 cm μPIC, 2 GEMs and a semitransparent CsI photocathode deposited on a MgF2 window. The effective photo-sensitive area is ϕ34 mm and the readouts are 400 μm pitch strips. A newly developed 20 mm size LaF3(Nd) crystal which emits 172 nm photons is coupled to the detector for the first step. The detector was tested in pulse mode operation with 5.5 MeV α particles from 241Am. The single photoelectrons were successfully detected and the images of the crystal shape were clearly obtained.

16 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the status of direct dark matter searches is summarized, focusing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale.
Abstract: In recent decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has improved with a tremendous speed due to a constant development of the detectors and analysis methods, proving uniquely suited devices to solve the dark matter puzzle, as all other discovery strategies can only indirectly infer its existence. Despite the overwhelming evidence for dark matter from cosmological indications at small and large scales, clear evidence for a particle explaining these observations remains absent. This review summarises the status of direct dark matter searches, focusing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale. The phenomenological signal expectations, main background sources, statistical treatment of data and calibration strategies are discussed.

395 citations

Journal ArticleDOI
TL;DR: A review of the physics of direct detection of dark matter, discussing the roles of both the particle physics and astrophysics in the expected signals, is given in this article, where the authors discuss the practical formulas needed to interpret a modulating signal.
Abstract: Direct detection experiments, which are designed to detect the scattering of dark matter off nuclei in detectors, are a critical component in the search for the Universe’s missing matter. This Colloquium begins with a review of the physics of direct detection of dark matter, discussing the roles of both the particle physics and astrophysics in the expected signals. The count rate in these experiments should experience an annual modulation due to the relative motion of the Earth around the Sun. This modulation, not present for most known background sources, is critical for solidifying the origin of a potential signal as dark matter. The focus is on the physics of annual modulation, discussing the practical formulas needed to interpret a modulating signal. The dependence of the modulation spectrum on the particle and astrophysics models for the dark matter is illustrated. For standard assumptions, the count rate has a cosine dependence with time, with a maximum in June and a minimum in December. Well-motivated generalizations of these models, however, can affect both the phase and amplitude of the modulation. Shown is how a measurement of an annually modulating signal could teach us about the presence of substructure in the galactic halo or about the interactions between dark and baryonic matter. Although primarily a theoretical review, the current experimental situation for annual modulation and future experimental directions is briefly discussed.

366 citations

Journal ArticleDOI
TL;DR: In this paper, the status of direct dark matter searches is summarized, focusing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale.
Abstract: In the past decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has improved with a tremendous speed due to a constant development of the detectors and analysis methods, proving uniquely suited devices to solve the dark matter puzzle, as all other discovery strategies can only indirectly infer its existence. Despite the overwhelming evidence for dark matter from cosmological indications at small and large scales, a clear evidence for a particle explaining these observations remains absent. This review summarises the status of direct dark matter searches, focussing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale. The phenomenological signal expectations, main background sources, statistical treatment of data and calibration strategies are discussed.

270 citations

Journal ArticleDOI
TL;DR: In this article, the velocity distribution function of dark matter particles is determined from two of the highest resolution numerical simulations of Galactic dark matter structure (Via Lactea II and GHALO), and study the effects for these scenarios.
Abstract: The velocity distribution function of dark matter particles is expected to show significant departures from a Maxwell-Boltzmann distribution. This can have profound effects on the predicted dark matter - nucleon scattering rates in direct detection experiments, especially for dark matter models in which the scattering is sensitive to the high velocity tail of the distribution, such as inelastic dark matter (iDM) or light (few GeV) dark matter (LDM), and for experiments that require high energy recoil events, such as many directionally sensitive experiments. Here we determine the velocity distribution functions from two of the highest resolution numerical simulations of Galactic dark matter structure (Via Lactea II and GHALO), and study the effects for these scenarios. For directional detection, we find that the observed departures from Maxwell-Boltzmann increase the contrast of the signal and change the typical direction of incoming DM particles. For iDM, the expected signals at direct detection experiments are changed dramatically: the annual modulation can be enhanced by more than a factor two, and the relative rates of DAMA compared to CDMS can change by an order of magnitude, while those compared to CRESST can change by a factor of two. The spectrum of the signal can also change dramatically, with many features arising due to substructure. For LDM the spectral effects are smaller, but changes do arise that improve the compatibility with existing experiments. We find that the phase of the modulation can depend upon energy, which would help discriminate against background should it be found.

254 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the effect of neutrino interactions on the detection performance in direct dark-matter detection experiments and find that neutrinos can be enhanced by new light force carriers (for instance a ''dark photon'') or neutrini magnetic moments.
Abstract: We investigate standard and non-standard solar neutrino signals in direct dark matter detection experiments. It is well known that even without new physics, scattering of solar neutrinos on nuclei or electrons is an irreducible background for direct dark matter searches, once these experiments reach the ton scale. Here, we entertain the possibility that neutrino interactions are enhanced by new physics, such as new light force carriers (for instance a ``dark photon'') or neutrino magnetic moments. We consider models with only the three standard neutrino flavors, as well as scenarios with extra sterile neutrinos. We find that low-energy neutrino-electron and neutrino-nucleus scattering rates can be enhanced by several orders of magnitude, potentially enough to explain the event excesses observed in CoGeNT and CRESST. We also investigate temporal modulation in these neutrino signals, which can arise from geometric effects, oscillation physics, non-standard neutrino energy loss, and direction-dependent detection efficiencies. We emphasize that, in addition to providing potential explanations for existing signals, models featuring new physics in the neutrino sector can also be very relevant to future dark matter searches, where, on the one hand, they can be probed and constrained, but on the other hand, their signatures could also be confused with dark matter signals.

234 citations