scispace - formally typeset
Search or ask a question
Author

C.J. Reading

Bio: C.J. Reading is an academic researcher. The author has contributed to research in topics: Population & Animal ecology. The author has an hindex of 1, co-authored 1 publications receiving 240 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The authors' results show that, of 17 snake populations from the UK, France, Italy, Nigeria and Australia, 11 have declined sharply over the same relatively short period of time with five remaining stable and one showing signs of a marginal increase.
Abstract: Long-term studies have revealed population declines in fishes, amphibians, reptiles, birds and mammals. In birds, and particularly amphibians, these declines are a global phenomenon whose causes are often unclear. Among reptiles, snakes are top predators and therefore a decline in their numbers may have serious consequences for the functioning of many ecosystems. Our results show that, of 17 snake populations (eight species) from the UK, France, Italy, Nigeria and Australia, 11 have declined sharply over the same relatively short period of time with five remaining stable and one showing signs of a marginal increase. Although the causes of these declines are currently unknown, we suspect that they are multi-faceted (such as habitat quality deterioration, prey availability), and with a common cause, e.g. global climate change, at their root.

270 citations


Cited by
More filters
Journal ArticleDOI
Monika Böhm1, Ben Collen1, Jonathan E. M. Baillie1, Philip Bowles2  +240 moreInstitutions (95)
TL;DR: The results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles.

720 citations

Journal ArticleDOI
TL;DR: New findings are provided which demonstrate that O. ophiodiicola is widely distributed in eastern North America, has a broad host range, is the predominant cause of fungal skin infections in wild snakes and often causes mild infections in snakes emerging from hibernation.
Abstract: Since 2006, there has been a marked increase in the number of reports of severe and often fatal fungal skin infections in wild snakes in the eastern USA. The emerging condition, referred to as snake fungal disease (SFD), was initially documented in rattlesnakes, where the infections were believed to pose a risk to the viability of affected populations. The disease is caused by Ophidiomyces ophiodiicola , a fungus recently split from a complex of fungi long referred to as the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). Here we review the current state of knowledge about O. ophiodiicola and SFD. In addition, we provide original findings which demonstrate that O. ophiodiicola is widely distributed in eastern North America, has a broad host range, is the predominant cause of fungal skin infections in wild snakes and often causes mild infections in snakes emerging from hibernation. This new information, together with what is already available in the scientific literature, advances our knowledge of the cause, pathogenesis and ecology of SFD. However, additional research is necessary to elucidate the factors driving the emergence of this disease and develop strategies to mitigate its impacts. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’.

166 citations

Journal ArticleDOI
TL;DR: It is argued that the use of an indicator species approach needs to be better justified because it has the potential to create significant problems and attempts to quantify surrogacy relationships may reveal that the alternative of direct measurement of particular entities of environmental or conservation interest will be the best option.
Abstract: The enormity and complexity of problems like environmental degradation and biodiversity loss have led to the development of indicator species and other surrogate approaches to track changes in environments and/or in biodiversity. Under these approaches particular species or groups of species are used as proxies for other biota, particular environmental conditions, or for environmental change. The indicator species approach contrasts with a direct measurement approach in which the focus is on a single entity or a highly targeted subset of entities in a given ecosystem but no surrogacy relationships with unmeasured entities are assumed. Here, we present a broad philosophical discussion of the indicator species and direct measurement approaches because their relative advantages and disadvantages are not well understood by many researchers, resource managers and policy makers. A goal of the direct measurement approach is to demonstrate a causal relationship between key attributes of the target ecosystem system (for example, particular environmental conditions) and the entities selected for measurement. The key steps in the approach are based on the fundamental scientific principles of hypothesis testing and associated direct measurement that drive research activities, management activities and monitoring programs. The direct measurement approach is based on four critical assumptions:(1) the ‘right’ entities to measure have been selected, (2) these entities are well known, (3) there is sufficient understanding about key ecological processes and (4) the entities selected can be accurately measured. The direct measurement approach is reductionist and many elements of the biota, many biotic processes and environmental factors must be ignored because of practical considerations. The steps in applying the indicator species approach are broadly similar to the direct measurement approach, except surrogacy relationships also must be quantified between a supposed indicator species or indicator group and the factors for which it is purported to be a proxy. Such quantification needs to occur via: (1) determining the taxonomic, spatial and temporal bounds for which a surrogacy relationship does and does not hold. That is, the extent of transferability of a given surrogate such as an indicator species to other biotic groups, to landscapes, ecosystems, environmental circumstances or over time in the same location can be determined; and (2) determining the ecological mechanisms underpinning a surrogacy relationship (for example, through fundamental studies of community structure). Very few studies have rigorously addressed these two tasks, despite the extremely widespread use of the indicator species approach and similar kinds of surrogate schemes in virtually all fields of environmental, resource and conservation management. We argue that this has the potential to create significant problems; thus, the use of an indicator species approach needs to be better justified. Attempts to quantify surrogacy relationships may reveal that, in some circumstances, the alternative of direct measurement of particular entities of environmental or conservation interest will be the best option.

164 citations

Journal ArticleDOI
TL;DR: Physical contact with animals appears to be a crucial element to improve schoolchildren's attitude for an unpopular organism, and the results support the promotion of field trips that include physical contact with wildlife over the current trend in the educational systems that promote virtual approaches.
Abstract: The general public prefers to support conservation projects that focus on a few, easily “loveable” species; consequently most of biodiversity is neglected. It is essential to redress such bias and to educate children about the value of a wide diversity of organisms, including those labeled by social bias as less appealing. Because snakes are among the most disliked animals, they are suitable candidates for such endeavor. We evaluated the impact of a single field trip on the attitudes of more than 500 schoolchildren. The participants were involved in snake catching and were allowed to manipulate nonvenomous snakes. The organizers limited their intervention to providing natural history information and carefully avoided saying that snakes should be protected. We used pre- and post-field trip questionnaires to gauge the feelings of the children. Although pre-surveys suggested that many schoolchildren like snakes a priori, their attitudes improved following field experience: almost all children declar...

92 citations