scispace - formally typeset
Search or ask a question
Author

C. L. Liu

Bio: C. L. Liu is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Dynamic priority scheduling & Scheduling (computing). The author has an hindex of 3, co-authored 3 publications receiving 12350 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The problem of multiprogram scheduling on a single processor is studied from the viewpoint of the characteristics peculiar to the program functions that need guaranteed service and it is shown that an optimum fixed priority scheduler possesses an upper bound to processor utilization.
Abstract: The problem of multiprogram scheduling on a single processor is studied from the viewpoint of the characteristics peculiar to the program functions that need guaranteed service. It is shown that an optimum fixed priority scheduler possesses an upper bound to processor utilization which may be as low as 70 percent for large task sets. It is also shown that full processor utilization can be achieved by dynamically assigning priorities on the basis of their current deadlines. A combination of these two scheduling techniques is also discussed.

7,067 citations

Book
03 Jan 1989
TL;DR: In this paper, the problem of multiprogram scheduling on a single processor is studied from the viewpoint of the characteristics peculiar to the program functions that need guaranteed service, and it is shown that an optimum fixed priority scheduler possesses an upper bound to processor utilization which may be as low as 70 percent for large task sets.
Abstract: The problem of multiprogram scheduling on a single processor is studied from the viewpoint of the characteristics peculiar to the program functions that need guaranteed service. It is shown that an optimum fixed priority scheduler possesses an upper bound to processor utilization which may be as low as 70 percent for large task sets. It is also shown that full processor utilization can be achieved by dynamically assigning priorities on the basis of their current deadlines. A combination of these two scheduling techniques is also discussed.

5,397 citations

Book
01 Jan 1986

197 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An investigation is conducted of two protocols belonging to the priority inheritance protocols class; the two are called the basic priority inheritance protocol and the priority ceiling protocol, both of which solve the uncontrolled priority inversion problem.
Abstract: An investigation is conducted of two protocols belonging to the priority inheritance protocols class; the two are called the basic priority inheritance protocol and the priority ceiling protocol. Both protocols solve the uncontrolled priority inversion problem. The priority ceiling protocol solves this uncontrolled priority inversion problem particularly well; it reduces the worst-case task-blocking time to at most the duration of execution of a single critical section of a lower-priority task. This protocol also prevents the formation of deadlocks. Sufficient conditions under which a set of periodic tasks using this protocol may be scheduled is derived. >

2,443 citations

Proceedings ArticleDOI
05 Dec 1989
TL;DR: An exact characterization of the ability of the rate monotonic scheduling algorithm to meet the deadlines of a periodic task set and a stochastic analysis which gives the probability distribution of the breakdown utilization of randomly generated task sets are represented.
Abstract: An exact characterization of the ability of the rate monotonic scheduling algorithm to meet the deadlines of a periodic task set is represented. In addition, a stochastic analysis which gives the probability distribution of the breakdown utilization of randomly generated task sets is presented. It is shown that as the task set size increases, the task computation times become of little importance, and the breakdown utilization converges to a constant determined by the task periods. For uniformly distributed tasks, a breakdown utilization of 88% is a reasonable characterization. A case is shown in which the average-case breakdown utilization reaches the worst-case lower bound of C.L. Liu and J.W. Layland (1973). >

1,582 citations

Proceedings ArticleDOI
23 Oct 1995
TL;DR: This paper proposes a simple model of job scheduling aimed at capturing some key aspects of energy minimization, and gives an off-line algorithm that computes, for any set of jobs, a minimum-energy schedule.
Abstract: The energy usage of computer systems is becoming an important consideration, especially for battery-operated systems. Various methods for reducing energy consumption have been investigated, both at the circuit level and at the operating systems level. In this paper, we propose a simple model of job scheduling aimed at capturing some key aspects of energy minimization. In this model, each job is to be executed between its arrival time and deadline by a single processor with variable speed, under the assumption that energy usage per unit time, P, is a convex function, of the processor speed s. We give an off-line algorithm that computes, for any set of jobs, a minimum-energy schedule. We then consider some on-line algorithms and their competitive performance for the power function P(s)=s/sup p/ where p/spl ges/2. It is shown that one natural heuristic, called the Average Rate heuristic, uses at most a constant times the minimum energy required. The analysis involves bounding the largest eigenvalue in matrices of a special type.

1,525 citations

Journal ArticleDOI
TL;DR: SME has been built to explore Gentner's structure-mapping theory of analogy, and provides a "tool kit" for constructing matching algorithms consistent with this theory, making it a useful component in machine learning systems as well.

1,336 citations