scispace - formally typeset
Search or ask a question
Author

C.-L. Wong

Bio: C.-L. Wong is an academic researcher from National University of Singapore. The author has contributed to research in topics: Deflection (engineering) & Die (integrated circuit). The author has an hindex of 2, co-authored 2 publications receiving 73 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an analytical framework was formulated to model the deflection behavior which was verified through finite element simulations (FEM) and the experimental measurements agree well with analytical and finite element results using Young's modulus of 1 TPa.
Abstract: Characterization of nanomechanical graphene drum structures is presented in this paper. The structures were fabricated by mechanical exfoliation of graphite onto pre-etched circular trenches in silicon dioxide on a silicon substrate. Drum structures with diameters ranging from 3.8 to 5.7 µm and thicknesses down to 8 nm were achieved. Mechanical characterization of the devices was then carried out by using atomic force microscopy (AFM) to measure their electrostatic deflection. The structures were found to have linear spring constants ranging from 3.24 to 37.4 N m−1 and could be actuated to about 18–34% of their thickness before exhibiting nonlinear deflection. An analytical framework was formulated to model the deflection behaviour which was verified through finite element simulations (FEM). The experimental measurements agree well with analytical and finite element results using Young's modulus of 1 TPa. The resonance characteristics of the structures were derived by both plate theory and FEM simulations. It was found that our drum structures could potentially vibrate at frequencies in excess of 25 MHz. The small size and high operating frequencies of our nanomechanical graphene devices make them very promising for resonant mass sensing applications with 10−20 g Hz−1 sensitivity, a two order of magnitude improvement over other reported silicon structures.

75 citations

Journal ArticleDOI
TL;DR: In this paper, a phonon detection technique was used to determine the temperature coefficient of resonant frequency TCf of MEMS resonators, which can also characterize multiple resonators fabricated on the same die or wafer using a single piezoelectric element.
Abstract: In this paper, we utilize a phonon detection technique to determine the temperature coefficient of resonant frequency TCf of MEMS resonators. The technique adopted is highly sensitive to device motions and allows for TCf measurement with less than 5 ppm °C−1 error. In addition, it can also characterize multiple resonators fabricated on the same die or wafer using a single piezoelectric element. Although the multiple devices have to be measured sequentially, the data acquisition time per resonator is short, making the technique an ideal wafer level characterization tool for high volume device testing. The devices used in our TCf experiments are comb-actuated clamped–clamped beam resonators fabricated using the SOIMUMPs process from MEMSCAP. The clamped–clamped architecture of these devices makes them especially prone to thermal-induced strain. A theoretical framework for analyzing the TCf of these resonators was also derived. Experiments on 16 sample devices show that altering the length L and width w of the clamped–clamped beam improves the TCf of the devices by up to 22%. From our TCf measurements, it was also deduced that a mismatch in the thermal expansion coefficients of the SOI structural and substrate layers caused the thermal-induced strain on our samples. The mismatch was determined to be 3.8 × 10−8 °C−1 for one particular sample die.

5 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: The versatility of graphene-based devices goes beyond conventional transistor circuits and includes flexible and transparent electronics, optoelectronics, sensors, electromechanical systems, and energy technologies.
Abstract: Graphene, a single layer of carbon atoms in a honeycomb lattice, offers a number of fundamentally superior qualities that make it a promising material for a wide range of applications, particularly in electronic devices. Its unique form factor and exceptional physical properties have the potential to enable an entirely new generation of technologies beyond the limits of conventional materials. The extraordinarily high carrier mobility and saturation velocity can enable a fast switching speed for radio-frequency analog circuits. Unadulterated graphene is a semi-metal, incapable of a true off-state, which typically precludes its applications in digital logic electronics without bandgap engineering. The versatility of graphene-based devices goes beyond conventional transistor circuits and includes flexible and transparent electronics, optoelectronics, sensors, electromechanical systems, and energy technologies. Many challenges remain before this relatively new material becomes commercially viable, but laboratory prototypes have already shown the numerous advantages and novel functionality that graphene provides.

740 citations

Journal ArticleDOI
TL;DR: Graphene, a monolayer of graphite sheet consisting of sp2 hybridized carbon atoms covalently bonded to three other atoms (discovered in 2004), has recently attracted the attention of chemical sensor researchers owing to its unprecedented structural, mechanical and electrical properties.
Abstract: Graphene, a monolayer of graphite sheet consisting of sp2 hybridized carbon atoms covalently bonded to three other atoms (discovered in 2004), has recently attracted the attention of chemical sensor researchers owing to its unprecedented structural, mechanical and electrical properties. Excellent mechanical strength (Young modulus ∼0.05 TPa), potentiality of ultrafast electron transport (highest mobility ∼200,000 cm 2 /V s) along with the best surface to volume ratio has opened up the opportunity to use the material for future gas and vapor sensors with ultra fast speed and long-term durability. Since it is a two dimensional material, every atom of graphene may be considered a surface atom and as a result every atom site may be involved in the gas interactions. This feature of graphene can eventually be responsible for its ultra sensitive sensor response with the lowest detection capability approaching even a single molecule. Further, the ease of functionalization of the material either by chemical means (absorption of many molecules like oxygen or hydrogen) or by application of voltage or pressure, facilitates bandgap-engineering which in turn may lead to a possible solution to the selectivity issues, the perennial problems of chemical sensors. In this review, the latest advancement and new perspectives of graphene based gas and vapor sensors have been discussed critically.

628 citations

Journal ArticleDOI
TL;DR: This review presents the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene by providing the crystallographic description of mechanical deformations, as well as the diffraction pattern for different kinds of representative deformation fields.
Abstract: This review presents the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene. It starts by providing the crystallographic description of mechanical deformations, as well as the diffraction pattern for different kinds of representative deformation fields. Then, the focus turns to the unique elastic properties of graphene, and to how strain is produced. Thereafter, various theoretical approaches used to study the electronic properties of strained graphene are examined, discussing the advantages of each. These approaches provide a platform to describe exotic properties, such as a fractal spectrum related with quasicrystals, a mixed Dirac-Schrodinger behavior, emergent gravity, topological insulator states, in molecular graphene and other 2D discrete lattices. The physical consequences of strain on the optical properties are reviewed next, with a focus on the Raman spectrum. At the same time, recent advances to tune the optical conductivity of graphene by strain engineering are given, which open new paths in device applications. Finally, a brief review of strain effects in multilayered graphene and other promising 2D materials like silicene and materials based on other group-IV elements, phosphorene, dichalcogenide- and monochalcogenide-monolayers is presented, with a brief discussion of interplays among strain, thermal effects, and illumination in the latter material family.

358 citations

Journal Article
TL;DR: In this paper, the potential of graphene as a material for fabricating various types of sensors is discussed, covering chemical and electrochemical sensors, magnetic and electric field sensors, optical sensors together with mass and strain sensors.
Abstract: This paper reviews the potential of graphene as a material for fabricating various types of sensors. Graphene is a monolayer of carbon atoms which exhibits some remarkable electronic and mechanical properties and many of these properties lend themselves to sensor applications. The review attempts to be comprehensive in sensor types covering chemical and electrochemical sensors, magnetic and electric field sensors, optical sensors together with mass and strain sensors. The fact that graphene offers some advantages over this entire range of sensing modalities is an indication of its versatility and importance.

318 citations