scispace - formally typeset
Search or ask a question
Author

C. Levy

Bio: C. Levy is an academic researcher from University of Münster. The author has contributed to research in topics: Dark matter & WIMP. The author has an hindex of 27, co-authored 45 publications receiving 5566 citations. Previous affiliations of C. Levy include University at Albany, SUNY & Queen's University.

Papers
More filters
Journal ArticleDOI
TL;DR: A search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso for 13 months during 2011 and 2012, has yielded no evidence for dark matter interactions.
Abstract: We report on a search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso (LNGS) for 13 months during 2011 and 2012. XENON100 features an ultra-low electromagnetic background of (5.3\pm0.6)\times10^-3 events (kg day keVee)^-1 in the energy region of interest. A blind analysis of 224.6 live days \times 34 kg exposure has yielded no evidence for dark matter interactions. The two candidate events observed in the pre-defined nuclear recoil energy range of 6.6-30.5 keVnr are consistent with the background expectation of (1.0 \pm 0.2) events. A Profile Likelihood analysis using a 6.6-43.3 keVnr energy range sets the most stringent limit on the spin-independent elastic WIMP-nucleon scattering cross section for WIMP masses above 8 GeV/c^2, with a minimum of 2 \times 10^-45 cm^2 at 55 GeV/c^2 and 90% confidence level.

1,624 citations

Journal ArticleDOI
TL;DR: The XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy, finds no evidence for dark matter, leading to the most stringent limit on dark matter interactions today.
Abstract: We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time-projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows the selection of only the innermost 48 kg as the ultralow background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in the signal region with an expected background of (1.8{+-}0.6) events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic weakly interacting massive particle (WIMP) nucleon scattering cross sections above 7.0x10{sup -45} cm{sup 2} for a WIMP mass of 50 GeV/c{sup 2} at 90% confidence level.

815 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, F. D. Amaro5, M. Anthony1, Lior Arazi6, F. Arneodo7, C. Balan5, P. Barrow8, Laura Baudis8, Boris Bauermeister9, Boris Bauermeister4, T. Berger10, P. A. Breur2, Amos Breskin6, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno12, Ran Budnik6, L. Bütikofer13, João Cardoso5, M. Cervantes14, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, H. Contreras1, Jean-Pierre Cussonneau15, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, E. Duchovni6, S. Fattori4, A. D. Ferella9, A. Fieguth12, D. Franco8, W. Fulgione, Michelle Galloway8, M. Garbini3, C. Geis4, Luke Goetzke1, Z. Greene1, C. Grignon4, E. K. U. Gross6, W. Hampel11, C. Hasterok11, R. Itay6, Florian Kaether11, B. Kaminsky13, G. Kessler8, A. Kish8, H. Landsman6, R. F. Lang14, D. Lellouch6, L. Levinson6, M. Le Calloch15, C. Levy10, Sebastian Lindemann11, Manfred Lindner11, J. A. M. Lopes5, A. Lyashenko16, S. Macmullin14, A. Manfredini6, T. Marrodán Undagoitia11, Julien Masbou15, F. V. Massoli3, D. Mayani8, A. J. Melgarejo Fernandez1, Y. Meng16, M. Messina1, K. Micheneau15, B. Miguez, A. Molinario, M. Murra12, J. Naganoma17, Uwe Oberlack4, S. E. A. Orrigo5, P. Pakarha8, Bart Pelssers9, R. Persiani15, F. Piastra8, J. Pienaar14, Guillaume Plante1, N. Priel6, L. Rauch11, S. Reichard14, C. Reuter14, A. Rizzo1, S. Rosendahl12, N. Rupp11, J.M.F. dos Santos5, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, Jochen Schreiner11, Marc Schumann13, L. Scotto Lavina15, M. Selvi3, P. Shagin17, Hardy Simgen11, A. Stein16, D. Thers15, A. Tiseni2, G. C. Trinchero, C. Tunnell2, M. von Sivers13, R. Wall17, Hui Wang16, M. Weber1, Yuehuan Wei8, Ch. Weinheimer12, J. Wulf8, Yanxi Zhang1 
TL;DR: In this article, the expected sensitivity of the Xenon1T experiment to the spin-independent WIMP-nucleon interaction cross section was investigated based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds.
Abstract: The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) · 10(−)(4) (kg·day·keV)(−)(1), mainly due to the decay of (222)Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (t·y)(−)(1) from radiogenic neutrons, (1.8 ± 0.3) · 10(−)(2) (t·y)(−)(1) from coherent scattering of neutrinos, and less than 0.01 (t·y)(−)(1) from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency Script L(eff), which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 · 10(−)(47) cm(2) at m(χ) = 50 GeV/c(2).

580 citations

Journal ArticleDOI
TL;DR: New experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section are presented using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy.
Abstract: We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days×34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with Xe129 and Xe131 nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c2, with a minimum cross section of 3.5×10−40 cm2 at a WIMP mass of 45 GeV/c2, at 90% confidence level.

336 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini3, M. Alfonsi4, L. Althueser5, F. D. Amaro6, M. Anthony1, F. Arneodo7, Laura Baudis8, Boris Bauermeister9, M. L. Benabderrahmane7, T. Berger10, P. A. Breur2, April S. Brown2, Ethan Brown10, S. Bruenner11, Giacomo Bruno7, Ran Budnik12, C. Capelli8, João Cardoso6, D. Cichon11, D. Coderre13, Auke-Pieter Colijn2, Jan Conrad9, Jean-Pierre Cussonneau14, M. P. Decowski2, P. de Perio1, P. Di Gangi3, A. Di Giovanni7, Sara Diglio14, A. Elykov13, G. Eurin11, J. Fei15, A. D. Ferella9, A. Fieguth5, W. Fulgione, A. Gallo Rosso, Michelle Galloway8, F. Gao1, M. Garbini3, C. Geis4, L. Grandi16, Z. Greene1, H. Qiu12, C. Hasterok11, E. Hogenbirk2, J. Howlett1, R. Itay12, F. Joerg11, B. Kaminsky13, Shingo Kazama8, A. Kish8, G. Koltman12, H. Landsman12, R. F. Lang17, L. Levinson12, Qing Lin1, Sebastian Lindemann13, Manfred Lindner11, F. Lombardi15, J. A. M. Lopes6, J. Mahlstedt9, A. Manfredini12, T. Marrodán Undagoitia11, Julien Masbou14, D. Masson17, M. Messina7, K. Micheneau14, Kate C. Miller16, A. Molinario, K. Morå9, M. Murra5, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack4, Bart Pelssers9, F. Piastra8, J. Pienaar16, V. Pizzella11, Guillaume Plante1, R. Podviianiuk, N. Priel12, D. Ramírez García13, L. Rauch11, S. Reichard8, C. Reuter17, B. Riedel16, A. Rizzo1, A. Rocchetti13, N. Rupp11, J.M.F. dos Santos6, Gabriella Sartorelli3, M. Scheibelhut4, S. Schindler4, J. Schreiner11, D. Schulte5, Marc Schumann13, L. Scotto Lavina19, M. Selvi3, P. Shagin18, E. Shockley16, Manuel Gameiro da Silva6, H. Simgen11, Dominique Thers14, F. Toschi13, F. Toschi3, Gian Carlo Trinchero, C. Tunnell16, N. Upole16, M. Vargas5, O. Wack11, Hongwei Wang20, Zirui Wang, Yuehuan Wei15, Ch. Weinheimer5, C. Wittweg5, J. Wulf8, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: In this article, a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS is reported.
Abstract: We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30±0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4,10.6] keVee ([4.9,40.9] keVnr), exhibits an ultralow electron recoil background rate of [82-3+5(syst)±3(stat)] events/(ton yr keVee). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c2, with a minimum of 4.1×10-47 cm2 at 30 GeV/c2 and a 90% confidence level.

1,808 citations

Journal ArticleDOI
Elena Aprile1, Jelle Aalbers2, F. Agostini, M. Alfonsi3, F. D. Amaro4, M. Anthony1, F. Arneodo5, P. Barrow6, Laura Baudis6, Boris Bauermeister7, M. L. Benabderrahmane5, T. Berger8, P. A. Breur2, April S. Brown2, Ethan Brown8, S. Bruenner9, Giacomo Bruno, Ran Budnik10, L. Bütikofer11, J. Calvén7, João Cardoso4, M. Cervantes12, D. Cichon9, D. Coderre11, Auke-Pieter Colijn2, Jan Conrad7, Jean-Pierre Cussonneau13, M. P. Decowski2, P. de Perio1, P. Di Gangi14, A. Di Giovanni5, Sara Diglio13, G. Eurin9, J. Fei15, A. D. Ferella7, A. Fieguth16, W. Fulgione, A. Gallo Rosso, Michelle Galloway6, F. Gao1, M. Garbini14, Robert Gardner17, C. Geis3, Luke Goetzke1, L. Grandi17, Z. Greene1, C. Grignon3, C. Hasterok9, E. Hogenbirk2, J. Howlett1, R. Itay10, B. Kaminsky11, Shingo Kazama6, G. Kessler6, A. Kish6, H. Landsman10, R. F. Lang12, D. Lellouch10, L. Levinson10, Qing Lin1, Sebastian Lindemann9, Manfred Lindner9, F. Lombardi15, J. A. M. Lopes4, A. Manfredini10, I. Mariș5, T. Marrodán Undagoitia9, Julien Masbou13, F. V. Massoli14, D. Masson12, D. Mayani6, M. Messina1, K. Micheneau13, A. Molinario, K. Morâ7, M. Murra16, J. Naganoma18, Kaixuan Ni15, Uwe Oberlack3, P. Pakarha6, Bart Pelssers7, R. Persiani13, F. Piastra6, J. Pienaar12, V. Pizzella9, M.-C. Piro8, Guillaume Plante1, N. Priel10, L. Rauch9, S. Reichard6, C. Reuter12, B. Riedel17, A. Rizzo1, S. Rosendahl16, N. Rupp9, R. Saldanha17, J.M.F. dos Santos4, Gabriella Sartorelli14, M. Scheibelhut3, S. Schindler3, J. Schreiner9, Marc Schumann11, L. Scotto Lavina19, M. Selvi14, P. Shagin18, E. Shockley17, Manuel Gameiro da Silva4, H. Simgen9, M. V. Sivers11, A. Stein20, S. Thapa17, Dominique Thers13, A. Tiseni2, Gian Carlo Trinchero, C. Tunnell17, M. Vargas16, N. Upole17, Hui Wang20, Zirui Wang, Yuehuan Wei6, Ch. Weinheimer16, J. Wulf6, J. Ye15, Yanxi Zhang1, T. Zhu1 
TL;DR: The first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy, are reported and a profile likelihood analysis shows that the data are consistent with the background-only hypothesis.
Abstract: We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind The blinded search used 342 live days of data acquired between November 2016 and January 2017 Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (193±025)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector A profile likelihood analysis shows that the data are consistent with the background-only hypothesis We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c2, with a minimum of 77×10-47 cm2 for 35-GeV/c2 WIMPs at 90% CL

1,061 citations

Journal ArticleDOI
TL;DR: This new version of micrOMEGAs is a major update which includes a generalization of the Boltzmann equations to accommodate models with asymmetric dark matter or with semi-annihilation and a first approach to a generalizations of the thermodynamics of the Universe in the relic density computation.

922 citations

Journal ArticleDOI
Fengpeng An1, Guangpeng An, Qi An2, Vito Antonelli3  +226 moreInstitutions (55)
TL;DR: The Jiangmen Underground Neutrino Observatory (JUNO) as mentioned in this paper is a 20kton multi-purpose underground liquid scintillator detector with the determination of neutrino mass hierarchy (MH) as a primary physics goal.
Abstract: The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3–4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters ${\mathrm{sin}}^{2}{\theta }_{12}$, ${\rm{\Delta }}{m}_{21}^{2}$, and $| {\rm{\Delta }}{m}_{{ee}}^{2}| $ to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ∼5000 inverse-beta-decay events and ∼2000 all-flavor neutrino–proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations. Detection of neutrinos from all past core-collapse supernova explosions in the visible universe with JUNO would further provide valuable information on the cosmic star-formation rate and the average core-collapse neutrino energy spectrum. Antineutrinos originating from the radioactive decay of uranium and thorium in the Earth can be detected in JUNO with a rate of ∼400 events per year, significantly improving the statistics of existing geoneutrino event samples. Atmospheric neutrino events collected in JUNO can provide independent inputs for determining the MH and the octant of the ${\theta }_{23}$ mixing angle. Detection of the (7)Be and (8)B solar neutrino events at JUNO would shed new light on the solar metallicity problem and examine the transition region between the vacuum and matter dominated neutrino oscillations. Regarding light sterile neutrino topics, sterile neutrinos with ${10}^{-5}\,{{\rm{eV}}}^{2}\lt {\rm{\Delta }}{m}_{41}^{2}\lt {10}^{-2}\,{{\rm{eV}}}^{2}$ and a sufficiently large mixing angle ${\theta }_{14}$ could be identified through a precise measurement of the reactor antineutrino energy spectrum. Meanwhile, JUNO can also provide us excellent opportunities to test the eV-scale sterile neutrino hypothesis, using either the radioactive neutrino sources or a cyclotron-produced neutrino beam. The JUNO detector is also sensitive to several other beyondthe-standard-model physics. Examples include the search for proton decay via the $p\to {K}^{+}+\bar{ u }$ decay channel, search for neutrinos resulting from dark-matter annihilation in the Sun, search for violation of Lorentz invariance via the sidereal modulation of the reactor neutrino event rate, and search for the effects of non-standard interactions. The proposed construction of the JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics in a timely and cost-effective fashion. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe.

807 citations