scispace - formally typeset
Search or ask a question
Author

C Morris

Bio: C Morris is an academic researcher from AstraZeneca. The author has contributed to research in topics: Cancer & Metastatic breast cancer. The author has an hindex of 1, co-authored 1 publications receiving 71 citations.

Papers
More filters
Journal ArticleDOI
C Morris1, A Wakeling
TL;DR: Fulvestrant has recently gained US Food and Drug Administration approval for the treatment of hormone receptor-positive metastatic breast cancer in postmenopausal women with disease progression following antiestrogen therapy and these new hormonal treatments expand the choice of endocrine therapy for women with advanced breast cancer.
Abstract: Since its introduction more than 30 years ago, tamoxifen has been the most widely used endocrine therapy for the treatment of women with advanced breast cancer. More recently, a number of alternative endocrine treatments have been developed, including several selective estrogen receptor modulators (SERMs), aromatase inhibitors (AIs) and, most recently, fulvestrant ('Faslodex'). Fulvestrant is an estrogen receptor (ER) antagonist, which, unlike the SERMs, has no known agonist (estrogenic) effect and downregulates the ER protein. Tamoxifen is effective and well tolerated, although the non-steroidal AIs, anastrozole and letrozole, are more effective treatments for advanced disease than tamoxifen. Fulvestrant has recently gained US Food and Drug Administration approval for the treatment of hormone receptor-positive metastatic breast cancer in postmenopausal women with disease progression following antiestrogen therapy. In two global phase III clinical trials fulvestrant was at least as effective and as equally well tolerated as anastrozole for the treatment of postmenopausal women with advanced and metastatic breast cancer. In a retrospective analysis of the combined data from these trials, mean duration of response was significantly greater for fulvestrant compared with anastrozole. These new hormonal treatments expand the choice of endocrine therapy for women with advanced breast cancer and offer new options for sequencing and combining treatments.

71 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib significantly delayed the emergence of resistance to both estrogen deprivation and fulvestrant, but reactivation of HER-2/neu and signaling through AKT leads to tumor regrowth.
Abstract: HER-2/neu in breast cancer is associated with tamoxifen resistance, but little data exist on its interaction with estrogen deprivation or fulvestrant. Here, we used an in vivo xenograft model of estrogen receptor (ER)-positive breast cancer with HER-2/neu overexpression (MCF7/HER-2/neu-18) to investigate mechanisms of growth inhibition and treatment resistance. MCF7/HER-2/neu-18 tumors were growth inhibited by estrogen deprivation and with fulvestrant, but resistance developed in 2 to 3 months. Inhibited tumors had reductions in ER, insulin-like growth factor-I receptor (IGF-IR), phosphorylated HER-2/neu (p-HER-2/neu), and phosphorylated p42/44 mitogen-activated protein kinase (p-MAPK). p27 was increased especially in tumors sensitive to estrogen deprivation. Tumors with acquired resistance to these therapies had complete loss of ER, increased p-HER-2/neu, increased p-MAPK, and reduced p27. In contrast, IGF-IR and phosphorylated AKT (p-AKT) levels were markedly reduced in these resistant tumors. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib, which can block EGFR/HER-2/neu signaling, significantly delayed the emergence of resistance to both estrogen deprivation and fulvestrant. Levels of p-MAPK and p-AKT decreased with gefitinib, whereas high ER levels were restored. Eventually, however, tumors progressed in mice treated with gefitinib combined with estrogen deprivation or fulvestrant accompanied again by loss of ER and IGF-IR, increased p-HER-2/neu, high p-MAPK, and now increased p-AKT. Thus, estrogen deprivation and fulvestrant can effectively inhibit HER-2/neu-overexpressing tumors but resistance develops quickly. EGFR/HER-2/neu inhibitors can delay resistance, but reactivation of HER-2/neu and signaling through AKT leads to tumor regrowth. Combining endocrine therapy with EGFR/HER-2/neu inhibitors should be tested in clinical breast cancer, but a more complete blockade of EGFR/HER-2/neu may be optimal.

158 citations

Journal ArticleDOI
TL;DR: Compelling experimental and clinical evidence suggest that the epidermal growth factor/her2/neu receptor (EGFR/HER2) pathway might play a distinct role in endocrine resistance, and especially in resistance to selective estrogen receptor modulators (SERMs) such as tamoxifen.
Abstract: Estrogen receptor (ER), mediating estrogen-signaling stimuli, is a dominant regulator and a key therapeutic target in breast cancer etiology and progression. Endocrine therapy, blocking the ER pathway, is one of the most important systemic therapies in breast cancer management, but de novo and acquired resistance is still a major clinical problem. New research highlights the role of both genomic and nongenomic ER activities and their intimate molecular crosstalk with growth factor receptor and other signaling kinase pathways in endocrine resistance. These signaling pathways, when overexpressed and/or hyperactivated, can modulate both activities of ER, resulting in endocrine resistance. Thus, these signal transduction receptors and signaling molecules may serve as both predictive markers and novel therapeutic targets to circumvent endocrine resistance. Compelling experimental and clinical evidence suggest that the epidermal growth factor/HER2/neu receptor (EGFR/HER2) pathway might play a distinct role in endocrine resistance, and especially in resistance to selective estrogen receptor modulators (SERMs) such as tamoxifen. Results from preclinical studies of treatment combinations with various endocrine therapy drugs together with several potent anti-EGFR/HER2 inhibitors are very promising, and clinical trials to see whether this new strategy is effective in patients are now ongoing.

146 citations

Journal ArticleDOI
TL;DR: The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described.
Abstract: The discovery of an orally bioavailable selective estrogen receptor downregulator (SERD) with equivalent potency and preclinical pharmacology to the intramuscular SERD fulvestrant is described. A directed screen identified the 1-aryl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole motif as a novel, druglike ER ligand. Aided by crystal structures of novel ligands bound to an ER construct, medicinal chemistry iterations led to (E)-3-(3,5-difluoro-4-((1R,3R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl)acrylic acid (30b, AZD9496), a clinical candidate with high oral bioavailability across preclinical species that is currently being evaluated in phase I clinical trials for the treatment of advanced estrogen receptor (ER) positive breast cancer.

143 citations

Journal ArticleDOI
19 Nov 2009-Oncogene
TL;DR: A crucial role for p72 is highlighted in ERα co-activation and oestrogen-dependent cell growth and evidence in support of distinct but important roles for both p68 and p72 in regulating ERα activity in breast cancer is provided.
Abstract: The DEAD-box RNA helicases p68 (DDX5) and p72 (DDX17) have been shown to act as transcriptional co-activators for a diverse range of transcription factors, including oestrogen receptor-alpha (ERalpha). Here, we show that, although both proteins interact with and co-activate ERalpha in reporter gene assays, small interfering RNA-mediated knockdown of p72, but not p68, results in a significant inhibition of oestrogen-dependent transcription of endogenous ERalpha-responsive genes and oestrogen-dependent growth of MCF-7 and ZR75-1 breast cancer cells. Furthermore, immunohistochemical staining of ERalpha-positive primary breast cancers for p68 and p72 indicate that p72 expression is associated with an increased period of relapse-free and overall survival (P=0.006 and 0.016, respectively), as well as being inversely associated with Her2 expression (P=0.008). Conversely, p68 shows no association with relapse-free period, or overall survival, but it is associated with an increased expression of Her2 (P=0.001), AIB-1 (P<0.001) and higher tumour grade (P=0.044). Our data thus highlight a crucial role for p72 in ERalpha co-activation and oestrogen-dependent cell growth and provide evidence in support of distinct but important roles for both p68 and p72 in regulating ERalpha activity in breast cancer.

101 citations

Journal ArticleDOI
TL;DR: The molecular mechanisms through which ER activates transcription of target genes and through which available anti-estrogens mediate their therapeutic effects are reviewed.
Abstract: Evidence for a role of ovarian factors in the growth of metastatic breast cancer was first recognized over 100 years ago. Today, anti-estrogens are central to the treatment of breast cancer of all stages. We now understand that the action of estrogen is mediated by the estrogen receptors (ER) which are members of the nuclear receptor family of ligand-regulated transcription factors. In this article we review the molecular mechanisms through which ER activates transcription of target genes and through which available anti-estrogens mediate their therapeutic effects. We discuss possible mechanisms of failure of treatment with current anti-estrogens and how newer anti-estrogens under development attempt to address these problems. In addition an expanded view of the molecular mechanisms of estrogen action is leading to the development of novel selective ER modulators or SERMs.

98 citations