scispace - formally typeset
Search or ask a question
Author

C. Moutou

Bio: C. Moutou is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Planet & Exoplanet. The author has an hindex of 63, co-authored 214 publications receiving 12237 citations. Previous affiliations of C. Moutou include Aix-Marseille University & University of Provence.


Papers
More filters
Proceedings ArticleDOI
TL;DR: The SPHERE instrument as discussed by the authors was designed for direct detection and spectral characterization of extra-solar planets, where the main challenge consists in the very large contrast between the host star and the planet, typically inside the seeing halo.
Abstract: Direct detection and spectral characterization of extra-solar planets is one of the most exciting but also one of the most challenging areas in modern astronomy. The challenge consists in the very large contrast between the host star and the planet, larger than 12.5 magnitudes at very small angular separations, typically inside the seeing halo. The whole design of a "Planet Finder" instrument is therefore optimized towards reaching the highest contrast in a limited field of view and at short distances from the central star. Both evolved and young planetary systems can be detected, respectively through their reflected light and through the intrinsic planet emission. We present the science objectives, conceptual design and expected performance of the SPHERE instrument.

672 citations

Journal ArticleDOI
A. Léger1, Daniel Rouan2, Jean Schneider3, Pierre Barge4  +159 moreInstitutions (17)
TL;DR: In this paper, the authors reported the discovery of very shallow (ΔF/F ≈ 3.4× 10 −4 ) periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which they interpret as caused by a transiting companion.
Abstract: Aims. We report the discovery of very shallow (ΔF/F ≈ 3.4× 10 −4 ), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40 �� or triple systems are almost excluded with a 8 × 10 −4 risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 ± 3 × 10 −5 day and a radius of Rp = 1.68 ± 0.09 REarth .A nalysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, ≈1800–2600 K at the substellar point, and a very low one, ≈50 K, on its dark face assuming no atmosphere, have been derived.

665 citations

Journal ArticleDOI
TL;DR: In this paper, a constrained optimization of X 2 combined with a Bayesian prior based on the main-sequence mass and radius expected from the Two Micron All Sky Survey J -H colour was used to quantify both the departure of the host star from the mainsequence mass-radius relation and the probability that the companion radius is less than 1.5 Jupiter radii.
Abstract: Transiting extrasolar planets constitute only a small fraction of the range of stellar systems found to display periodic, shallow dimmings in wide-field surveys employing small-aperture A camera arrays. Here we present an efficient selection strategy for follow-up observations, derived from analysis of the light curves of a sample of 67 SuperWASP targets that passed the selection tests we used in earlier papers, but which have subsequently been identified either as planet hosts or as astrophysical false positives. We determine the system parameters using Markov-chain Monte Carlo analysis of the SuperWASP light curves. We use a constrained optimization of X 2 combined with a Bayesian prior based on the main-sequence mass and radius expected from the Two Micron All Sky Survey J - H colour. The Bayesian nature of the analysis allows us to quantify both the departure of the host star from the main-sequence mass-radius relation and the probability that the companion radius is less than 1.5 Jupiter radii. When augmented by direct fight-curve analyses that detect binaries with unequal primary and secondary eclipses, and objects with aperture blends that are resolved by SuperWASP, we find that only 13 of the original 67 stars, including the three known planets in the sample, would qualify for follow-up. This suggests that planet discovery 'hit rates' better than one-in-five should be achievable. In addition, the stellar binaries that qualify are likely to have astrophysically interesting stellar or substellar secondaries.

329 citations

Journal ArticleDOI
TL;DR: In this article, the authors detected low-amplitude radial-velocity variations in two stars, USNO-B1.0 1219− 0005465 (GSC 02265−00107 = WASP•B1) and WASP-2b, which were identified as likely host stars of transiting exoplanets in the 2004 SuperWASP wide-field transit survey.
Abstract: We have detected low-amplitude radial-velocity variations in two stars, USNO-B1.0 1219‐ 0005465 (GSC 02265‐00107 = WASP‐1) and USNO-B1.0 0964‐0543604 (GSC 00522‐ 01199 = WASP‐2). Both stars were identified as being likely host stars of transiting exoplanets in the 2004 SuperWASP wide-field transit survey. Using the newly commissioned radial-velocity spectrograph SOPHIE at the Observatoire de Haute-Provence, we found that both objects exhibit reflex orbital radial-velocity variations with amplitudes characteristic of planetary-mass companions and in-phase with the photometric orbits. Line-bisector studies rule out faint blended binaries as the cause of either the radial-velocity variations or the transits. We perform preliminary spectral analyses of the host stars, which together with their radialvelocity variations and fits to the transit light curves yield estimates of the planetary masses and radii. WASP-1b and WASP-2b have orbital periods of 2.52 and 2.15 d, respectively. Given mass estimates for their F7V and K1V primaries, we derive planet masses 0.80‐0.98 and 0.81‐ 0.95 times that of Jupiter, respectively. WASP-1b appears to have an inflated radius of at least 1.33 RJup, whereas WASP-2b has a radius in the range 0.65‐1.26 RJup.

290 citations

Journal ArticleDOI
TL;DR: In this article, a sample of giant transiting exoplanets detected by the Kepler telescope with orbital periods up to 400 days was used to reveal the nature of these candidates and measure a false positive rate of 54.6 +/- 6.5% for giant-planet candidates orbiting within 400 days of period.
Abstract: While giant extrasolar planets have been studied for more than two decades now, there are still some open questions as to their dominant formation and migration processes, as well as to their atmospheric evolution in different stellar environments. In this paper, we study a sample of giant transiting exoplanets detected by the Kepler telescope with orbital periods up to 400 days. We first defined a sample of 129 giant-planet candidates that we followed up with the SOPHIE spectrograph (OHP, France) in a 6-year radial velocity campaign. This allowed us to unveil the nature of these candidates and to measure a false-positive rate of 54.6 +/- 6.5% for giant-planet candidates orbiting within 400 days of period. Based on a sample of confirmed or likely planets, we then derived the occurrence rates of giant planets in different ranges of orbital periods. The overall occurrence rate of giant planets within 400 days is 4.6 +/- 0.6%. We recovered, for the first time in the Kepler data, the different populations of giant planets reported by radial velocity surveys. Comparing these rates with other yields, we find that the occurrence rate of giant planets is lower only for hot Jupiters but not for the longer-period planets. We also derive a first measurement of the occurrence rate of brown dwarfs in the brown-dwarf desert with a value of 0.29 +/- 0.17%. Finally, we discuss the physical properties of the giant planets in our sample. We confirm that giant planets receiving moderate irradiation are not inflated, but we find that they are on average smaller than predicted by formation and evolution models. In this regime of low-irradiated giant planets, we find a possible correlation between their bulk density and the iron abundance of the host star, which needs more detections to be confirmed.

264 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Transiting Exoplanet Survey Satellite (TESS) as discussed by the authors will search for planets transiting bright and nearby stars using four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its 2-year mission, TESS will employ four wide-field optical charge-coupled device cameras to monitor at least 200,000 main-sequence dwarf stars with I C ≈4−13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from 1 month to 1 year, depending mainly on the star’s ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10 to 100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every 4 months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.

2,604 citations

Journal ArticleDOI
TL;DR: The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrogram, and a novel optical interferometer.
Abstract: The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 sq. deg of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-Object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include measured abundances of 15 different elements for each star. In total, SDSS-III added 2350 sq. deg of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 sq. deg; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5,513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.

2,471 citations

Journal ArticleDOI
TL;DR: SDSS-III as mentioned in this paper is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars.
Abstract: Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS DR8 (which occurred in Jan 2011). This paper presents an overview of the four SDSS-III surveys. BOSS will measure redshifts of 1.5 million massive galaxies and Lya forest spectra of 150,000 quasars, using the BAO feature of large scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z 100 per resolution element), H-band (1.51-1.70 micron) spectra of 10^5 evolved, late-type stars, measuring separate abundances for ~15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. MARVELS will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 m/s, ~24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. (Abridged)

2,265 citations

Journal ArticleDOI
TL;DR: The Transiting Exoplanet Survey Satellite (TESS) as mentioned in this paper was selected by NASA for launch in 2017 as an Astrophysics Explorer mission to search for planets transiting bright and nearby stars.
Abstract: The Transiting Exoplanet Survey Satellite (TESS) will search for planets transiting bright and nearby stars. TESS has been selected by NASA for launch in 2017 as an Astrophysics Explorer mission. The spacecraft will be placed into a highly elliptical 13.7-day orbit around the Earth. During its two-year mission, TESS will employ four wide-field optical CCD cameras to monitor at least 200,000 main-sequence dwarf stars with I = 4-13 for temporary drops in brightness caused by planetary transits. Each star will be observed for an interval ranging from one month to one year, depending mainly on the star's ecliptic latitude. The longest observing intervals will be for stars near the ecliptic poles, which are the optimal locations for follow-up observations with the James Webb Space Telescope. Brightness measurements of preselected target stars will be recorded every 2 min, and full frame images will be recorded every 30 min. TESS stars will be 10-100 times brighter than those surveyed by the pioneering Kepler mission. This will make TESS planets easier to characterize with follow-up observations. TESS is expected to find more than a thousand planets smaller than Neptune, including dozens that are comparable in size to the Earth. Public data releases will occur every four months, inviting immediate community-wide efforts to study the new planets. The TESS legacy will be a catalog of the nearest and brightest stars hosting transiting planets, which will endure as highly favorable targets for detailed investigations.

1,728 citations

Journal ArticleDOI
TL;DR: In this article, an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars.
Abstract: Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et?al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et?al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67?AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70?AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200?K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T eff 5000?K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star's spectral type. We suggest that conservative estimates of the HZ (water-loss and maximum greenhouse limits) should be used for current RV surveys and Kepler mission to obtain a lower limit on ??, so that future flagship missions like TPF-C and Darwin are not undersized. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.

1,526 citations