scispace - formally typeset
Search or ask a question
Author

C. Parsons

Bio: C. Parsons is an academic researcher from Intel. The author has contributed to research in topics: Low-dropout regulator & Load regulation. The author has an hindex of 3, co-authored 3 publications receiving 514 citations.

Papers
More filters
Journal ArticleDOI
Peter Hazucha1, Tanay Karnik1, B.A. Bloechel1, C. Parsons1, D. Finan1, Shekhar Borkar1 
TL;DR: In this article, the authors demonstrate a fully integrated linear regulator for multisupply voltage microprocessors implemented in a 90 nm CMOS technology, which enables a 90 mV/sub P-P/output droop with only a small on-chip decoupling capacitor of 0.6 nF.
Abstract: We demonstrate a fully integrated linear regulator for multisupply voltage microprocessors implemented in a 90 nm CMOS technology. Ultra-fast single-stage load regulation achieves a 0.54-ns response time at 94% current efficiency. For a 1.2-V input voltage and 0.9-V output voltage the regulator enables a 90 mV/sub P-P/ output droop for a 100-mA load step with only a small on-chip decoupling capacitor of 0.6 nF. By using a PMOS pull-up transistor in the output stage we achieved a small regulator area of 0.008 mm/sup 2/ and a minimum dropout voltage of 0.2 V for 100 mA of output current. The area for the 0.6-nF MOS capacitor is 0.090 mm/sup 2/.

509 citations

Proceedings Article
01 Jan 2005
TL;DR: In this paper, the authors demonstrate a fully integrated linear regulator for multisupply voltage microprocessors implemented in a 90 nm CMOS technology, which enables a 90 mVp-p output droop for a 100mA load step with only a small on-chip decoupling capacitor of 0.6 nF.
Abstract: We demonstrate a fully integrated linear regulator for multisupply voltage microprocessors implemented in a 90 nm CMOS technology. Ultra-fast single-stage load regulation achieves a 0.54-ns response time at 94% current efficiency. For a 1.2-V input voltage and 0.9-V output voltage the regulator enables a 90 mVp-p output droop for a 100-mA load step with only a small on-chip decoupling capacitor of 0.6 nF. By using a PMOS pull-up transistor in the output stage we achieved a small regulator area of 0.008 mm 2 and a minimum dropout voltage of 0.2 V for 100 mA of output current. The area for the 0.6-nF MOS capacitor is 0.090 mm 2 .

24 citations

Proceedings ArticleDOI
Peter Hazucha1, Tanay Karnik1, B. Bloechel1, C. Parsons1, D. Finan1, S. Borkar1 
17 Jun 2004
TL;DR: In this paper, a fully integrated linear regulator for multi-supply-voltage microprocessors implemented in a 90 nm CMOS technology is presented, which achieves 0.54 ns response time at 94% current efficiency.
Abstract: We demonstrate a fully-integrated linear regulator for multi-supply-voltage microprocessors implemented in a 90 nm CMOS technology. Ultra-fast, single-stage load regulation achieves 0.54 ns response time at 94% current efficiency. This enables 10% peak-to-peak output noise for a 100 mA load step with only a small on-chip decoupling capacitor of 0.6 nF. A PMOS pull-up transistor in the output stage results in a small regulator area of 0.008 mm/sup 2/ and the 0.6 nF MOS capacitor area of 0.090 mm/sup 2/.

22 citations


Cited by
More filters
Proceedings ArticleDOI
24 Oct 2008
TL;DR: It is concluded that on-chip regulators can significantly improve DVFS effectiveness and lead to overall system energy savings in a CMP, but architects must carefully account for overheads and costs when designing next-generation DVFS systems and algorithms.
Abstract: Portable, embedded systems place ever-increasing demands on high-performance, low-power microprocessor design. Dynamic voltage and frequency scaling (DVFS) is a well-known technique to reduce energy in digital systems, but the effectiveness of DVFS is hampered by slow voltage transitions that occur on the order of tens of microseconds. In addition, the recent trend towards chip-multiprocessors (CMP) executing multi-threaded workloads with heterogeneous behavior motivates the need for per-core DVFS control mechanisms. Voltage regulators that are integrated onto the same chip as the microprocessor core provide the benefit of both nanosecond-scale voltage switching and per-core voltage control. We show that these characteristics provide significant energy-saving opportunities compared to traditional off-chip regulators. However, the implementation of on-chip regulators presents many challenges including regulator efficiency and output voltage transient characteristics, which are significantly impacted by the system-level application of the regulator. In this paper, we describe and model these costs, and perform a comprehensive analysis of a CMP system with on-chip integrated regulators. We conclude that on-chip regulators can significantly improve DVFS effectiveness and lead to overall system energy savings in a CMP, but architects must carefully account for overheads and costs when designing next-generation DVFS systems and algorithms.

758 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a solution to the present bulky external capacitor low-dropout (LDO) voltage regulators with an external capacitorless LDO architecture, where the large external capacitor used in typical LDOs is removed allowing for greater power system integration for system-on-chip (SoC) applications.
Abstract: This paper proposes a solution to the present bulky external capacitor low-dropout (LDO) voltage regulators with an external capacitorless LDO architecture. The large external capacitor used in typical LDOs is removed allowing for greater power system integration for system-on-chip (SoC) applications. A compensation scheme is presented that provides both a fast transient response and full range alternating current (AC) stability from 0- to 50-mA load current even if the output load is as high as 100 pF. The 2.8-V capacitorless LDO voltage regulator with a power supply of 3 V was fabricated in a commercial 0.35-mum CMOS technology, consuming only 65 muA of ground current with a dropout voltage of 200 mV. Experimental results demonstrate that the proposed capacitorless LDO architecture overcomes the typical load transient and ac stability issues encountered in previous architectures.

484 citations

Journal ArticleDOI
23 Jul 2007
TL;DR: In this paper, a low-dropout regulator (LDO) with an impedance-attenuated buffer for driving the pass device was proposed. But the buffer was not used to reduce the output voltage.
Abstract: This paper presents a low-dropout regulator (LDO) for portable applications with an impedance-attenuated buffer for driving the pass device. Dynamically-biased shunt feedback is proposed in the buffer to lower its output resistance such that the pole at the gate of the pass device is pushed to high frequencies without dissipating large quiescent current. By employing the current-buffer compensation, only a single pole is realized within the regulation loop unity-gain bandwidth and over 65deg phase margin is achieved under the full range of the load current in the LDO. The LDO thus achieves stability without using any low-frequency zero. The maximum output-voltage variation can be minimized during load transients even if a small output capacitor is used. The LDO with the proposed impedance-attenuated buffer has been implemented in a 0.35-mum twin-well CMOS process. The proposed LDO dissipates 20-muA quiescent current at no-load condition and is able to deliver up to 200-mA load current. With a 1-muF output capacitor, the maximum transient output-voltage variation is within 3% of the output voltage with load step changes of 200 mA/100 ns.

353 citations

Journal ArticleDOI
TL;DR: An integrated buck dc-dc converter for multi-V/sub CC/ microprocessors with four-phase topology and fast hysteretic control is demonstrated, which eliminated the need for the inductor magnetic core and enabled integration of the output decoupling capacitor on-chip.
Abstract: We demonstrate an integrated buck dc-dc converter for multi-V/sub CC/ microprocessors. At nominal conditions, the converter produces a 0.9-V output from a 1.2-V input. The circuit was implemented in a 90-nm CMOS technology. By operating at high switching frequency of 100 to 317 MHz with four-phase topology and fast hysteretic control, we reduced inductor and capacitor sizes by three orders of magnitude compared to previously published dc-dc converters. This eliminated the need for the inductor magnetic core and enabled integration of the output decoupling capacitor on-chip. The converter achieves 80%-87% efficiency and 10% peak-to-peak output noise for a 0.3-A output current and 2.5-nF decoupling capacitance. A forward body bias of 500 mV applied to PMOS transistors in the bridge improves efficiency by 0.5%-1%.

299 citations

Journal ArticleDOI
TL;DR: An output-capacitorless low-dropout regulator (LDO) with a direct voltage-spike detection circuit is presented in this paper and the transient response of the LDO is significantly enhanced due to the improvement of the slew rate at the gate of the power transistor.
Abstract: An output-capacitorless low-dropout regulator (LDO) with a direct voltage-spike detection circuit is presented in this paper. The proposed voltage-spike detection is based on capacitive coupling. The detection circuit makes use of the rapid transient voltage at the LDO output to increase the bias current momentarily. Hence, the transient response of the LDO is significantly enhanced due to the improvement of the slew rate at the gate of the power transistor. The proposed voltage-spike detection circuit is applied to an output-capacitorless LDO implemented in a standard 0.35-?m CMOS technology (where VTHN ? 0.5 V and VTHP ? -0.65 V). Experimental results show that the LDO consumes 19 ?A only. It regulates the output at 0.8 V from a 1-V supply, with dropout voltage of 200 mV at the maximum output current of 66.7 mA. The voltage spike and the recovery time of the LDO with the proposed voltage-spike detection circuit are reduced to about 70 mV and 3 ?s, respectively, whereas they are more than 420 mV and 30 ?s for the LDO without the proposed detection circuit.

262 citations