scispace - formally typeset
Search or ask a question
Author

C. Pearson

Bio: C. Pearson is an academic researcher from Stanford University. The author has contributed to research in topics: Particle accelerator & Collider. The author has an hindex of 10, co-authored 35 publications receiving 508 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a multimode $X$-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC).
Abstract: We present a multimode $X$-band rf pulse compression system suitable for a TeV-scale electron-positron linear collider such as the Next Linear Collider (NLC). The NLC main linac operating frequency is 11.424 GHz. A single NLC rf unit is required to produce 400 ns pulses with 475 MW of peak power. Each rf unit should power approximately 5 m of accelerator structures. The rf unit design consists of two 75 MW klystrons and a dual-moded resonant-delay-line pulse compression system that produces a flat output pulse. The pulse compression system components are all overmoded, and most components are designed to operate with two modes. This approach allows high-power-handling capability while maintaining a compact, inexpensive system. We detail the design of this system and present experimental cold test results. We describe the design and performance of various components. The high-power testing of the system is verified using four 50 MW solenoid-focused klystrons run off a common 400 kV solid-state modulator. The system has produced 400 ns rf pulses of greater than 500 MW. We present the layout of our system, which includes a dual-moded transmission waveguide system and a dual-moded resonant line (SLED-II) pulse compression system. We also present data on the processing and operation of this system, which has set high-power records in coherent and phase controlled pulsed rf.

199 citations

Proceedings ArticleDOI
16 May 2005
TL;DR: A 60 cm-long traveling-wave structure with low group velocity and 150 degree per cell phase advance is proposed in this paper, which has an average iris size that produces an acceptable short-range wakefield, and dipole mode damping and detuning that adequately suppresses the long range wakefield.
Abstract: During the past five years, there has been an concerted program at SLAC and KEK to develop accelerator structures that meet the high gradient (65 MV/m) performance requirements for the Next Linear Collider (NLC) and Global Linear Collider (GLC) initiatives. The design that resulted is a 60-cm-long, traveling-wave structure with low group velocity and 150 degree per cell phase advance. It has an average iris size that produces an acceptable short-range wakefield, and dipole mode damping and detuning that adequately suppresses the long-range wakefield. More than eight such structures have operated at a 60 Hz repetition rate over 1000 hours at 65 MV/m with 400 ns long pulses, and have reached breakdown rate levels below the limit for the linear collider. Moreover, the structures are robust in that the rates continue to decrease over time, and if the structures are briefly exposed to air, the rates recover to their low levels within a few days. This paper presents a summary of the results from this program, which effectively ended last August with the selection of ‘cold’ technology for an International Linear Collider (ILC).

51 citations

Proceedings ArticleDOI
17 May 1993
TL;DR: The NLC Test Accelerator (NLCTA) as discussed by the authors is a testbed for the next linear Collider (NLC) and is designed to address many questions related to the dynamics of the beam during acceleration.
Abstract: During the past several years, there has been tremendous progress on the development of the RF system and accelerating structures for a Next Linear Collider (NLC). Developments include high-power klystrons, RF pulse compression systems and damped/detuned accelerator structures to reduce wakefields. In order to integrate these separate development efforts into an actual X-band accelerator capable of accelerating the electron beams necessary for an NLC, we are building an NLC Test Accelerator (NLCTA). The goal of the NLCTA is to bring together all elements of the entire accelerating system by constructing and reliably operating an engineered model of a high-gradient linac suitable for the NLC. The NLCTA will serve as a testbed as the design of the NLC evolves. In addition to testing the RF acceleration system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration. In this paper, we will report on the status of the design, component development, and construction of the NLC Test Accelerator. >

44 citations

Proceedings ArticleDOI
27 Mar 1999
TL;DR: In this article, a new type of damped detuned structure with optimized round-shaped cavities (RDDS) was proposed for X-band accelerator structures for the JLC/NLC linear collider.
Abstract: For more than ten years, we have been working on R&D for X-band accelerator structures for the JLC/NLC linear collider. Several types of Detuned (DS) and Damped Detuned Structures (DDS) have been successfully designed and fabricated. They have been experimentally tested at both low power and high power to characterize their mechanical and electrical properties. Recently we started developing a new type of damped detuned structure with optimized round-shaped cavities (RDDS). This paper discusses the special specifications, design methods, fabrication procedures, measurement technologies, and anticipated future improvements for all these structures.

27 citations

ReportDOI
12 May 1997
TL;DR: In this paper, the authors describe the design and test results of the high power pulse compression system using SLED-II, which produces a 200 MW, 250 ns wide pulse with a near-perfect flat-top.
Abstract: The overmoded RF transmission and pulsed power compression system for SLAC's Next Linear Collider (NLC) program requires a high degree of transmission efficiency and mode purity to be economically feasible. To this end, a number of new, high power components and systems have been developed at X-band, which transmit RF power in the low loss, circular TE01 mode with negligible mode conversion. In addition, a highly efficient SLED-II pulse compressor has been developed and successfully tested at high power. The system produced a 200 MW, 250 ns wide pulse with a near-perfect flat-top. In this paper we describe the design and test results of the high power pulse compression system using SLED-II.

17 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors summarize the theoretical properties of the Standard Model Higgs boson and the Higgs sector of the minimal super-symmetric extension of the standard model (MSSM).

455 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the naturalness bounds on weak scale supersymmetry in the context of radiative breaking of the electroweak symmetry and found that the upper limits for the entire set of sparticle masses lie in the range $l700 \mathrm{GeV} (l 1.5 \mathm{TeV})$ for any reasonable range of fine-tuning $(\ensuremath{\Phi}l~20).
Abstract: Naturalness bounds on weak scale supersymmetry in the context of radiative breaking of the electroweak symmetry are analyzed. In the case of minimal supergravity it is found that for low $\mathrm{tan}\ensuremath{\beta}$ and for low values of fine-tuning $\ensuremath{\Phi},$ where $\ensuremath{\Phi}$ is defined essentially by the ratio ${\ensuremath{\mu}}^{2}{/M}_{Z}^{2}$ where $\ensuremath{\mu}$ is the Higgs mixing parameter and ${M}_{Z}$ is the $Z$ boson mass, the allowed values of the universal scalar parameter ${m}_{0},$ and the universal gaugino mass ${m}_{1/2}$ lie on the surface of an ellipsoid with radii fixed by $\ensuremath{\Phi}$ leading to tightly constrained upper bounds $\ensuremath{\sim}\sqrt{\ensuremath{\Phi}}.$ Thus for $\mathrm{tan}\ensuremath{\beta}l~2(l~5)$ it is found that the upper limits for the entire set of sparticle masses lie in the range $l700 \mathrm{GeV} (l1.5 \mathrm{TeV})$ for any reasonable range of fine-tuning $(\ensuremath{\Phi}l~20).$ However, it is found that there exist regions of the parameter space where the fine-tuning does not tightly constrain ${m}_{0}$ and ${m}_{1/2}.$ Effects of nonuniversalities in the Higgs boson sector and in the third generation sector on naturalness bounds are also analyzed and it is found that nonuniversalities can significantly affect the upper bounds. It is also found that achieving the maximum Higgs boson mass allowed in supergravity unified models requires a high degree of fine-tuning. Thus a heavy sparticle spectrum is indicated if the Higgs boson mass exceeds 120 GeV. The prospect for the discovery of supersymmetry at the Fermilab Tevatron and at the CERN LHC in view of these results is discussed.

383 citations

Patent
16 Oct 2015
TL;DR: In this paper, the authors describe a system that receives, by a feed point of a dielectric antenna, electromagnetic waves from a core coupled to the feed point without an electrical return path, and radiates a wireless signal responsive to the electromagnetic waves being received at the aperture.
Abstract: Aspects of the subject disclosure may include, for example, receiving, by a feed point of a dielectric antenna, electromagnetic waves from a dielectric core coupled to the feed point without an electrical return path, where at least a portion of the dielectric antenna comprises a conductive surface, directing, by the feed point, the electromagnetic waves to a proximal portion of the dielectric antenna, and radiating, via an aperture of the dielectric antenna, a wireless signal responsive to the electromagnetic waves being received at the aperture. Other embodiments are disclosed.

330 citations

Patent
17 May 2016
TL;DR: In this paper, a distributed antenna and backhaul system provide network connectivity for a small cell deployment using high-bandwidth, millimeter-wave communications and existing power line infrastructure, rather than building new structures, and installing additional fiber and cable.
Abstract: A distributed antenna and backhaul system provide network connectivity for a small cell deployment. Rather than building new structures, and installing additional fiber and cable, embodiments described herein disclose using high-bandwidth, millimeter-wave communications and existing power line infrastructure. Above ground backhaul connections via power lines and line-of-sight millimeter-wave band signals as well as underground backhaul connections via buried electrical conduits can provide connectivity to the distributed base stations. An overhead millimeter-wave system can also be used to provide backhaul connectivity. Modules can be placed onto existing infrastructure, such as streetlights and utility poles, and the modules can contain base stations and antennas to transmit the millimeter-waves to and from other modules.

298 citations

Patent
07 Jun 2016
TL;DR: In this article, a distributed antenna system is provided that frequency shifts the output of one or more microcells to a 60 GHz or higher frequency range for transmission to a set of distributed antennas.
Abstract: A distributed antenna system is provided that frequency shifts the output of one or more microcells to a 60 GHz or higher frequency range for transmission to a set of distributed antennas. The cellular band outputs of these microcell base station devices are used to modulate a 60 GHz (or higher) carrier wave, yielding a group of subcarriers on the 60 GHz carrier wave. This group will then be transmitted in the air via analog microwave RF unit, after which it can be repeated or radiated to the surrounding area. The repeaters amplify the signal and resend it on the air again toward the next repeater. In places where a microcell is required, the 60 GHz signal is shifted in frequency back to its original frequency (e.g., the 1.9 GHz cellular band) and radiated locally to nearby mobile devices.

296 citations