scispace - formally typeset
Search or ask a question
Author

C. Presura

Bio: C. Presura is an academic researcher from University of Groningen. The author has contributed to research in topics: Optical conductivity & Superconductivity. The author has an hindex of 5, co-authored 8 publications receiving 353 citations.

Papers
More filters
Journal ArticleDOI
22 Mar 2002-Science
TL;DR: A blue shift of the ab-plane plasma frequency when the material became superconducting, indicating that the spectral weight was transferred to the infrared range, is observed, in agreement with models in which superconductivity is accompanied by an increased charge carrier spectral weight.
Abstract: Optical data are reported on a spectral weight transfer over a broad frequency range of Bi2Sr2CaCu2O8+δ, when this material became superconducting. Using spectroscopic ellipsometry, we observed the removal of a small amount of spectral weight in a broad frequency band from 104 cm−1 to at least 2 × 104 cm−1, due to the onset of superconductivity. We observed a blue shift of the ab-plane plasma frequency when the material became superconducting, indicating that the spectral weight was transferred to the infrared range. Our observations are in agreement with models in which superconductivity is accompanied by an increased charge carrier spectral weight. The measured spectral weight transfer is large enough to account for the condensation energy in these compounds.

231 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the temperature-dependent optical conductivity of a ground state electronic ground state in the energy range 4 meV--4 eV and concluded that a second-order change to a larger unit cell takes place below 34 K.
Abstract: We investigate the temperature-dependent optical conductivity of ${\ensuremath{\alpha}}^{\ensuremath{'}}\ensuremath{-}{\mathrm{NaV}}_{2}{\mathrm{O}}_{5}$ in the energy range 4 meV--4 eV. The intensities and the polarization dependence of the detected electronic excitations give a direct indication for a broken-parity electronic ground state and for a noncentrosymmetric crystal structure of the system in the high-temperature phase. A direct two-magnon optical absorption process, proposed here, is in quantitative agreement with the optical data. By analyzing the optically allowed phonons at various temperatures above and below the phase transition, we conclude that a second-order change to a larger unit cell takes place below 34 K.

47 citations

Journal ArticleDOI
TL;DR: Temperature dependent optical spectra and the presence of a midinfrared band strongly suggest that the charge carriers in beta-Na0.33V2O5 are small polarons.
Abstract: Temperature dependent optical spectra are reported for beta-Na0.33V2O5. The sodium ordering transition at T-Na=240 K and, in particular, the charge ordering transition at T-MI=136 K strongly influence the optical spectra. The metal-insulator transition at T-MI leads to the opening of a pseudogap (homega=1700 cm(-1)) and to the appearance of a large number of optical phonons. These observations and the presence of a midinfrared band (typical for low dimensional metals) strongly suggest that the charge carriers in beta-Na0.33V2O5 are small polarons.

39 citations

01 Jan 1998
TL;DR: In this paper, the temperature-dependent optical conductivity of α'-NaV2O5 in the energy range 4 meV-4 eV was investigated and it was shown that a second-order change to a larger unit cell takes place below 34 K. A direct two-magnon optical absorption process was proposed in quantitative agreement with the optical data.
Abstract: We investigate the temperature-dependent optical conductivity of α'-NaV2O5 in the energy range 4 meV–4 eV. The intensities and the polarization dependence of the detected electronic excitations give a direct indication for a broken-parity electronic ground state and for a noncentrosymmetric crystal structure of the system in the high-temperature phase. A direct two-magnon optical absorption process, proposed here, is in quantitative agreement with the optical data. By analyzing the optically allowed phonons at various temperatures above and below the phase transition, we conclude that a second-order change to a larger unit cell takes place below 34 K.

27 citations

Journal ArticleDOI
TL;DR: Polarized Raman and optical spectra for the quasi one-dimensional metallic vanadate β-Na0.33V2O3 are reported for various temperatures in this paper.
Abstract: Polarized Raman and optical spectra for the quasi one-dimensional metallic vanadate β-Na0.33V2O3 are reported for various temperatures. The spectra are discussed in the light of the sodium and charge ordering transitions occurring in this material, and demonstrate the presence of strong electron–phonon coupling.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the physics of high-temperature superconductors from the point of view of the doping of a Mott insulator is presented, with the goal of putting the resonating valence bond idea on a more formal footing.
Abstract: This article reviews the physics of high-temperature superconductors from the point of view of the doping of a Mott insulator. The basic electronic structure of cuprates is reviewed, emphasizing the physics of strong correlation and establishing the model of a doped Mott insulator as a starting point. A variety of experiments are discussed, focusing on the region of the phase diagram close to the Mott insulator (the underdoped region) where the behavior is most anomalous. The normal state in this region exhibits pseudogap phenomenon. In contrast, the quasiparticles in the superconducting state are well defined and behave according to theory. This review introduces Anderson's idea of the resonating valence bond and argues that it gives a qualitative account of the data. The importance of phase fluctuations is discussed, leading to a theory of the transition temperature, which is driven by phase fluctuations and the thermal excitation of quasiparticles. However, an argument is made that phase fluctuations can only explain pseudogap phenomenology over a limited temperature range, and some additional physics is needed to explain the onset of singlet formation at very high temperatures. A description of the numerical method of the projected wave function is presented, which turns out to be a very useful technique for implementing the strong correlation constraint and leads to a number of predictions which are in agreement with experiments. The remainder of the paper deals with an analytic treatment of the $t\text{\ensuremath{-}}J$ model, with the goal of putting the resonating valence bond idea on a more formal footing. The slave boson is introduced to enforce the constraint againt double occupation and it is shown that the implementation of this local constraint leads naturally to gauge theories. This review follows the historical order by first examining the U(1) formulation of the gauge theory. Some inadequacies of this formulation for underdoping are discussed, leading to the SU(2) formulation. Here follows a rather thorough discussion of the role of gauge theory in describing the spin-liquid phase of the undoped Mott insulator. The difference between the high-energy gauge group in the formulation of the problem versus the low-energy gauge group, which is an emergent phenomenon, is emphasized. Several possible routes to deconfinement based on different emergent gauge groups are discussed, which leads to the physics of fractionalization and spin-charge separation. Next the extension of the SU(2) formulation to nonzero doping is described with a focus on a part of the mean-field phase diagram called the staggered flux liquid phase. It will be shown that inclusion of the gauge fluctuation provides a reasonable description of the pseudogap phase. It is emphasized that $d$-wave superconductivity can be considered as evolving from a stable U(1) spin liquid. These ideas are applied to the high-${T}_{c}$ cuprates, and their implications for the vortex structure and the phase diagram are discussed. A possible test of the topological structure of the pseudogap phase is described.

3,246 citations

Journal ArticleDOI
TL;DR: A review of the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds is presented in this article, with the purpose of providing an updated summary of the extensive literature.
Abstract: The last decade witnessed significant progress in angle-resolved photoemission spectroscopy (ARPES) and its applications. Today, ARPES experiments with 2-meV energy resolution and $0.2\ifmmode^\circ\else\textdegree\fi{}$ angular resolution are a reality even for photoemission on solids. These technological advances and the improved sample quality have enabled ARPES to emerge as a leading tool in the investigation of the high-${T}_{c}$ superconductors. This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature. The low-energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and $d$-wave-like dispersion, evidence of electronic inhomogeneity and nanoscale phase separation, the emergence of coherent quasiparticles through the superconducting transition, and many-body effects in the one-particle spectral function due to the interaction of the charge with magnetic and/or lattice degrees of freedom. Given the dynamic nature of the field, we chose to focus mainly on reviewing the experimental data, as on the experimental side a general consensus has been reached, whereas interpretations and related theoretical models can vary significantly. The first part of the paper introduces photoemission spectroscopy in the context of strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second part provides an overview of the scientific issues relevant to the investigation of the low-energy electronic structure by ARPES. The rest of the paper is devoted to the experimental results from the cuprates, and the discussion is organized along conceptual lines: normal-state electronic structure, interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron self-energy, and collective modes. Within each topic, ARPES data from the various copper oxides are presented.

3,077 citations

Journal ArticleDOI
TL;DR: In this paper, a review of Na-ion battery materials is presented, with the aim of providing a wide view of the systems that have already been explored and a starting point for the new research on this battery technology.
Abstract: Energy production and storage have become key issues concerning our welfare in daily life. Present challenges for batteries are twofold. In the first place, the increasing demand for powering systems of portable electronic devices and zero-emission vehicles stimulates research towards high energy and high voltage systems. In the second place, low cost batteries are required in order to advance towards smart electric grids that integrate discontinuous energy flow from renewable sources, optimizing the performance of clean energy sources. Na-ion batteries can be the key for the second point, because of the huge availability of sodium, its low price and the similarity of both Li and Na insertion chemistries. In spite of the lower energy density and voltage of Na-ion based technologies, they can be focused on applications where the weight and footprint requirement is less drastic, such as electrical grid storage. Much work has to be done in the field of Na-ion in order to catch up with Li-ion technology. Cathodic and anodic materials must be optimized, and new electrolytes will be the key point for Na-ion success. This review will gather the up-to-date knowledge about Na-ion battery materials, with the aim of providing a wide view of the systems that have already been explored and a starting point for the new research on this battery technology.

3,017 citations

Posted Content
TL;DR: In this article, Anderson's idea of the resonating valence bond (RVB) was introduced to describe the spin liquid phase of the undoped Mott insulator, and the slave-boson is introduced to enforce the constraint of no double occupation.
Abstract: This article reviews the effort to understand the physics of high temperature superconductors from the point of view of doping a Mott insulator. The basic electronic structure of the cuprates is reviewed, emphasizing the physics of strong correlation and establishing the model of a doped Mott insulator as a starting point. A variety of experiments are discussed, focusing on the region of the phase diagram close to the Mott insulator (the underdoped region) where the behavior is most anomalous. We introduce Anderson's idea of the resonating valence bond (RVB) and argue that it gives a qualitative account of the data. The importance of phase fluctuation is discussed, leading to a theory of the transition temperature which is driven by phase fluctuation and thermal excitation of quasiparticles. We then describe the numerical method of projected wavefunction which turns out to be a very useful technique to implement the strong correlation constraint, and leads to a number of predictions which are in agreement with experiments. The remainder of the paper deals with an analytic treatment of the t-J model, with the goal of putting the RVB idea on a more formal footing. The slave-boson is introduced to enforce the constraint of no double occupation. The implementation of the local constraint leads naturally to gauge theories. We give a rather thorough discussion of the role of gauge theory in describing the spin liquid phase of the undoped Mott insulator. We next describe the extension of the SU(2) formulation to nonzero doping. We show that inclusion of gauge fluctuation provides a reasonable description of the pseudogap phase.

2,042 citations

Journal ArticleDOI
TL;DR: The quantum cluster theory as discussed by the authors is a set of approximations for infinite lattice models which treat correlations within the cluster explicitly, and correlations at longer length scales either perturbatively or within a mean-field approximation.
Abstract: This article reviews quantum cluster theories, a set of approximations for infinite lattice models which treat correlations within the cluster explicitly, and correlations at longer length scales either perturbatively or within a mean-field approximation. These methods become exact when the cluster size diverges, and most recover the corresponding mean-field approximation when the cluster size becomes 1. Although quantum cluster theories were originally developed to treat disordered systems, they have more recently been applied to the study of ordered and disordered correlated systems, which will be the focus of this review. After a brief historical review, the authors provide detailed derivations of three cluster formalisms: the cluster perturbation theory, the dynamical cluster approximation, and the cellular dynamical mean-field theory. They compare their advantages and review their applications to common models of correlated electron systems.

955 citations