scispace - formally typeset
Search or ask a question
Author

C.R. Brune

Bio: C.R. Brune is an academic researcher. The author has contributed to research in topics: NuMI & Neutrino oscillation. The author has an hindex of 3, co-authored 3 publications receiving 137 citations.

Papers
More filters
ReportDOI
D. S. Ayres, Alexandre Lebedev, Karol Lang, E. Blucher, D. G. Michael, N.V. Mokhov, H. S. Budd, J. L. Thron, G. F. Pearce, A. C. Weber, T. Patzak, D. E. Reyna, G.D. Barr, A. De Santo, S. Pordes, Gary Drake, I. Trostin, A. Marchionni, D. A. Harris, D.S. Carman, S. Menary, C. Cueva, E. Kearns, W. Metcalf, Kirk T. McDonald, P. Shanahan, V. Makeev, Marvin L Marshak, A. Bodek, G. Ginther, C.R. Brune, S. Manly, J. Schneps, R. L. Talaga, G. J. Feldman, K.H. Hicks, K. S. McFarland, P. J. Litchfield, K. M. Heeger, K. Lee, C. Bromberg, Walter Winter, R. Svoboda, N. Morgan, V. Paolone, Juergen Thomas, J. Hylen, Raymond Lee, Kate Scholberg, Caren Hagner, David Petyt, G. M. Irwin, W. Sakumoto, P. M. Border, Stephen J. Parke, Kai Zuber, Adam Para, S. M. Seun, G. Tzanakos, B. Kayser, J. K. Nelson, T. Joffe-Minor, Patrick Huber, R. Hatcher, V. Scarpino, N. Giokaris, V. J. Guarino, D. M. DeMuth, K-B. Luk, A.K. Opper, P. Slattery, P. Lucas, J. Cooper, Philip Harris, Sacha E Kopp, N. Tagg, T. Kafka, J. Urheim, Alec Habig, H. J. Kang, R. A. Richards, Carl H. Albright, E. A. Peterson, S. Childress, B. C. Choudhary, D. Carey, H. Minakata, R. Imlay, C. W. Walter, Thomas R. Chase, M. Zielinski, P. Kasper, F. DeJongh, S.M. Grimes, David B. Cline, Ken Heller, Manfred Lindner, N. Pearson, Stanley G. Wojcicki, P. deBarbaro, L. Mualem, K. Ruddick, R. Ray, R. Shrock, A. Mann, J.H. Cobb, Panagiotis Spentzouris, D. Naples, S. M. S. Kasahara, H. R. Gallagher, S. Geer, M. C. Goodman, S. Avvakumov, Hiroshi Nunokawa, V. Ryabov 
TL;DR: The first phase of the proposed program includes a new detector, optimized for neutrino detection, with a fiducial mass of the order of 20 kton and exposed to neutrinos and antineutrino beams.
Abstract: The NuMI neutrino beam line and the MINOS experiment represent a major investment of US High Energy Physics in the area of neutrino physics. The forthcoming results could decisively establish neutrino oscillations as the underlying physics mechanism for the atmospheric $ umu$ deficit and provide a precise measurement of the corresponding oscillation parameters, $\dmsq23$ and $\sinsq2t23$.neutrino sector may well be within our reach. The full potential of the NuMI neutrino beam can be exploited by complementing the MINOS detector, under construction, with a new detector(s) placed at some off-axis position and collecting data in parallel with MINOS. The first phase of the proposed program includes a new detector, optimized for $ ue$ detection, with a fiducial mass of the order of 20 kton and exposed to neutrino and antineutrino beams. In a five year run its sensitivity to the $ umutonue$ oscillations will be at least a factor of ten beyond the current limit. The future direction of the program will depend on the results of this first phase, but it is very likely that it will be a combination of a significant increase of the neutrino beam intensity via an upgraded proton source and an increase of the detector mass by a factor of five or so. Depending on the circumstances, the goals of Phase II may be a further increase of the sensitivity of a search for $ umutonue$ oscillations, or, perhaps, a measurement of the CP violating phase $\delta$ in the lepton sector.

54 citations

D. S. Ayres, Alexandre Lebedev, Karol Lang, R. L. Talaga, J. J. Grudzinski, John Oliver, A. C. Weber, R. Wands, T. Patzak, D. Cronin-Hennessy, Thomas R. Chase, Sacha E Kopp, R. S. Miller, S. Murgia, P. Stamoulis, Gary Drake, C. Howcroft, I. Trostin, Alec Habig, D. A. Harris, Francisco Yumiceva, Subhasmita Mishra, G. M. Irwin, J. L. Thron, J. A. Musser, B. Rebel, David Petyt, John W. Cooper, P. Shanahan, J. Huston, D. Koolbeck, V. Makeev, J. Trevor, P. J. Litchfield, J. Boehm, J. Schneps, S. R. Mishra, Warner A. Miller, O. Mena, G. J. Feldman, G.D. Barr, J. K. Nelson, K. Lee, H. R. Gallagher, V. A. Ryabov, V. J. Guarino, Roger Rusack, K. Grzelak, C. Rosenfeld, C. W. Peck, E. Tetteh-Lartey, K. Nelson, Rebecca Bernstein, Marvin L Marshak, Stephen J. Parke, G. F. Pearce, S. J. Brice, S. Stiliaris, J. Hanson, R. Schmitt, Mcd Sanchez, A. Belias, E. A. Peterson, A. Sousa, S. Mufson, H. Zheng, S. M. Seun, G. Tzanakos, J. W. Dawson, C. Bromberg, T. Joffe-Minor, Carl H. Albright, R. Hatcher, N. Felt, N. Giokaris, D. Drakoulakos, T. Bergfeld, A.K. Opper, J.H. Cobb, J. Hylen, D. G. Michael, T. Zhao, N. Tagg, T. Kafka, J. Urheim, A. V. Waldron, R. A. Richards, T. Yang, S. Childress, B. C. Choudhary, J. Rothberg, David B. Cline, T. Durkin, M. Zois, R.A. Rameika, R. C. Webb, D. E. Reyna, R.G. Wagner, C. Dukes, G. J. Bock, S.M. Grimes, W. A. Mann, A. Godley, Ken Heller, M. C. Goodman, Manfred Lindner, R. K. Plunkett, L. Camilleri, Stanley G. Wojcicki, R. Yarema, L. Mualem, K. Ruddick, R. E. Ray, R. Shrock, C. R. Bower, H. Jostlein, Panagiotis Spentzouris, J. Kilmer, T. Nicholls, Harvey B Newman, P. Lucas, S. Avvakumov, John F. Beacom, Hiroshi Nunokawa, C.R. Brune 
07 Jun 2004
TL;DR: A 30 kiloton tracking calorimeter with liquid scintillator filled PVC extrusion modules is proposed in the NOvA proposal as mentioned in this paper, with alternating horizontal and vertical rectangular cells.
Abstract: This is an updated version of the NOvA proposal The detector is a 30 kiloton tracking calorimeter, 157 m by 157 m by 132 m long, with alternating horizontal and vertical rectangular cells of liquid scintillator contained in PVC extrusion modules Light from each 157 m long cell of liquid scintillator filled PVC is collected by a wavelength shifting fiber and routed to an avalanche photodiode pixel The reach of NOvA for sin^2(2_theta_13) and related topics is increased relative to earlier versions of the proposal with the assumption of increased protons available from the Fermilab Main Injector following the end of Tevatron Collider operations in 2009

46 citations

D. S. Ayres, Alexandre Lebedev, Karol Lang, R. L. Talaga, J. J. Grudzinski, John Oliver, A. C. Weber, R. Wands, T. Patzak, D. Cronin-Hennessy, Thomas R. Chase, Sacha E Kopp, R. S. Miller, S. Murgia, P. Stamoulis, Gary Drake, C. Howcroft, I. Trostin, Alec Habig, D. A. Harris, Francisco Yumiceva, Subhasmita Mishra, G. M. Irwin, J. L. Thron, J. Musser, B. Rebel, David Petyt, P. Shanahan, J. Huston, D. Koolbeck, V. Makeev, J. Trevor, P. J. Litchfield, J. Boehm, J. Schneps, S. R. Mishra, Warner A. Miller, O. Mena, G. J. Feldman, G.D. Barr, J. K. Nelson, K. Lee, H. R. Gallagher, V. A. Ryabov, Victor Guarino, Roger Rusack, K. Grzelak, C. Rosenfeld, C. W. Peck, E. Tetteh-Lartey, K. Nelson, Rebecca Bernstein, Marvin L Marshak, Stephen J. Parke, G. F. Pearce, S. J. Brice, S. Stiliaris, J. Hanson, R. Schmitt, Mcd Sanchez, A. Belias, E. A. Peterson, A. Sousa, S. Mufson, H. Zheng, S. M. Seun, G. Tzanakos, J. W. Dawson, C. Bromberg, T. Joffe-Minor, Carl H. Albright, R. Hatcher, N. Felt, N. Giokaris, D. Drakoulakos, T. Bergfeld, A.K. Opper, J.H. Cobb, J. Hylen, D. G. Michael, T. Zhao, N. Tagg, T. Kafka, J. Urheim, John W. Cooper, A. V. Waldron, R. A. Richards, T. Yang, S. Childress, B. C. Choudhary, J. Rothberg, David B. Cline, T. Durkin, M. Zois, R.A. Rameika, R. C. Webb, D. E. Reyna, R.G. Wagner, C. Dukes, G. J. Bock, S.M. Grimes, W. A. Mann, A. Godley, Ken Heller, M. C. Goodman, Manfred Lindner, R. K. Plunkett, L. Camilleri, Stanley G. Wojcicki, R. Yarema, L. Mualem, K. Ruddick, R. E. Ray, R. Shrock, C. R. Bower, H. Jostlein, Panagiotis Spentzouris, J. Kilmer, T. Nicholls, Harvey B Newman, P. Lucas, S. Avvakumov, John F. Beacom, Hiroshi Nunokawa, C.R. Brune 
01 Jan 2004

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current status and some perspectives of the phenomenology of massive neutrinos are reviewed in this paper, with a focus on neutrino oscillations in vacuum and in matter.
Abstract: The current status and some perspectives of the phenomenology of massive neutrinos is reviewed. We start with the phenomenology of neutrino oscillations in vacuum and in matter. We summarize the results of neutrino experiments using solar, atmospheric, reactor and accelerator neutrino beams. We update the leptonic parameters derived from the three-neutrino oscillation interpretation of this data. We describe the method and present results on our understanding of the solar and atmospheric neutrino fluxes by direct extraction from the corresponding neutrino event rates. We present some tests of different forms of new physics which induce new sources of leptonic flavor transitions in vacuum and in matter which can be performed with the present neutrino data. The aim and potential of future neutrino experiments and facilities to further advance in these fronts is also briefly summarized. Last, the implications of the LSND observations are discussed, and the status of extended models which could accommodate all flavor-mixing signals is presented in the light of the recent results from MiniBooNE.

525 citations

Journal ArticleDOI
TL;DR: In this article, the quark-lepton complementarity (QLC) relation was proposed, which implies that the lepton and quark mixing angles add up to the maximal, suggesting a deep structure by which quarks and leptons are interrelated.
Abstract: As a result of the identification of the solution to the solar neutrino problem, a rather precise relation ${\ensuremath{\theta}}_{\mathrm{s}\mathrm{u}\mathrm{n}}+{\ensuremath{\theta}}_{C}=\ensuremath{\pi}/4$ between the leptonic 1-2 mixing angle ${\ensuremath{\theta}}_{\mathrm{s}\mathrm{u}\mathrm{n}}$ and the Cabibbo angle has emerged. It would mean that the lepton and the quark mixing angles add up to the maximal, suggesting a deep structure by which quarks and leptons are interrelated. We refer to the relation as ``quark-lepton complementarity'' (QLC) in this paper. We formulate general conditions under which the QLC relation is realized. We then present several scenarios which lead to the relation and elaborate on phenomenological consequences which can be tested by the future experiments. We also discuss implications of the QLC relation for the quark-lepton symmetry and the mechanism of neutrino mass generation.

249 citations

Journal ArticleDOI
TL;DR: In this article, the mass hierarchy of the neutrino sector was determined by combining high precision measurements of the atmospheric $ensuremath{delta{m}^{2}$ in both the electron and muon neutrinos disappearance channels.
Abstract: We show that by combining high precision measurements of the atmospheric $\ensuremath{\delta}{m}^{2}$ in both the electron and muon neutrino (or antineutrino) disappearance channels one can determine the neutrino mass hierarchy. The required precision is a very challenging fraction of one per cent for both measurements. At even higher precision, sensitivity to the cosine of the $CP$ violating phase is also possible. This method for determining the mass hierarchy of the neutrino sector does not depend on matter effects.

215 citations

Journal ArticleDOI
TL;DR: In this article, the type of the neutrino mass ordering (normal versus inverted) is determined and a statistical interpretation of the statistical interpretation is given. But, it is not discussed in this paper.
Abstract: Determining the type of the neutrino mass ordering ( normal versus inverted) is one of the most important open questions in neutrino physics In this paper we clarify the statistical interpretation

168 citations

Journal ArticleDOI
TL;DR: The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis in this article, and the overall agenda of a future neutrino physics program to construct a bottom-up understanding of the lepton sector is presented.
Abstract: The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. The impact of cosmology (BBN, CMB, leptogenesis) and astrophysics (supernovae, highest energy cosmic rays) on neutrino observables and vice versa, is evaluated. The predictions of grand unified, radiative and other models of neutrino mass are discussed. Ways of determining the unknown parameters of three-neutrino oscillations are assessed, taking into account eight-fold degeneracies in parameters that yield the same oscillation probabilities, as well as ways to determine the absolute neutrino mass scale (from beta-decay, neutrinoless double-beta decay, large scale structure and Z-bursts). Critical unknowns at present are the amplitude of νμ→νe oscillations and the hierarchy of the neutrino mass spectrum; the detection of CP violation in the neutrino sector depends on these and on an unknown phase. The estimated neutrino parameter sensitivities at future facilities (reactors, superbeams, neutrino factories) are given. The overall agenda of a future neutrino physics program to construct a bottom-up understanding of the lepton sector is presented.

157 citations