scispace - formally typeset
Search or ask a question
Author

C. R. Hall

Bio: C. R. Hall is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Collider Detector at Fermilab & Xenon. The author has an hindex of 47, co-authored 226 publications receiving 12433 citations. Previous affiliations of C. R. Hall include Harvard University & Stanford University.


Papers
More filters
Journal ArticleDOI
D. S. Akerib1, Henrique Araujo2, X. Bai3, A. J. Bailey2, J. Balajthy4, S. Bedikian5, Ethan Bernard5, A. Bernstein6, Alexander Bolozdynya1, A. W. Bradley1, D. Byram7, Sidney Cahn5, M. C. Carmona-Benitez8, C. Chan9, J.J. Chapman9, A. A. Chiller7, C. Chiller7, K. Clark1, T. Coffey1, A. Currie2, A. Curioni5, Steven Dazeley6, L. de Viveiros10, A. Dobi4, J. E. Y. Dobson11, E. M. Dragowsky1, E. Druszkiewicz12, B. N. Edwards5, C. H. Faham13, S. Fiorucci9, C. E. Flores14, R. J. Gaitskell9, V. M. Gehman13, C. Ghag15, K.R. Gibson1, Murdock Gilchriese13, C. R. Hall4, M. Hanhardt3, S. A. Hertel5, M. Horn5, D. Q. Huang9, M. Ihm16, R. G. Jacobsen16, L. Kastens5, K. Kazkaz6, R. Knoche4, S. Kyre8, R. L. Lander14, N. A. Larsen5, C. Lee1, David Leonard4, K. T. Lesko13, A. Lindote10, M.I. Lopes10, A. Lyashenko5, D.C. Malling9, R. L. Mannino17, Daniel McKinsey5, Dongming Mei7, J. Mock14, M. Moongweluwan12, J. A. Morad14, M. Morii18, A. St. J. Murphy11, C. Nehrkorn8, H. N. Nelson8, F. Neves10, James Nikkel5, R. A. Ott14, M. Pangilinan9, P. D. Parker5, E. K. Pease5, K. Pech1, P. Phelps1, L. Reichhart15, T. A. Shutt1, C. Silva10, W. Skulski12, C. Sofka17, V. N. Solovov10, P. Sorensen6, T.M. Stiegler17, K. O'Sullivan5, T. J. Sumner2, Robert Svoboda14, M. Sweany14, Matthew Szydagis14, D. J. Taylor, B. P. Tennyson5, D. R. Tiedt3, Mani Tripathi14, S. Uvarov14, J.R. Verbus9, N. Walsh14, R. C. Webb17, J. T. White17, D. White8, M. S. Witherell8, M. Wlasenko18, F.L.H. Wolfs12, M. Woods14, Chao Zhang7 
TL;DR: The first WIMP search data set is reported, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data, finding that the LUX data are in disagreement with low-mass W IMP signal interpretations of the results from several recent direct detection experiments.
Abstract: The Large Underground Xenon (LUX) experiment is a dual-phase xenon time-projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota). The LUX cryostat was filled for the first time in the underground laboratory in February 2013. We report results of the first WIMP search data set, taken during the period from April to August 2013, presenting the analysis of 85.3 live days of data with a fiducial volume of 118 kg. A profile-likelihood analysis technique shows our data to be consistent with the background-only hypothesis, allowing 90% confidence limits to be set on spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 × 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2). We find that the LUX data are in disagreement with low-mass WIMP signal interpretations of the results from several recent direct detection experiments.

1,962 citations

Journal ArticleDOI
D. S. Akerib1, S. Alsum2, Henrique Araujo3, X. Bai4, A. J. Bailey3, J. Balajthy5, P. Beltrame, Ethan Bernard6, A. Bernstein7, T. P. Biesiadzinski1, E. M. Boulton6, R. Bramante1, P. Brás8, D. Byram9, Sidney Cahn10, M. C. Carmona-Benitez11, C. Chan12, A.A. Chiller9, C. Chiller9, A. Currie3, J. E. Cutter13, T. J. R. Davison, A. Dobi14, J. E. Y. Dobson15, E. Druszkiewicz16, B. N. Edwards10, C. H. Faham14, S. Fiorucci12, R. J. Gaitskell12, V. M. Gehman14, C. Ghag15, K.R. Gibson1, M. G. D. Gilchriese14, C. R. Hall5, M. Hanhardt4, S. J. Haselschwardt11, S. A. Hertel6, D. P. Hogan6, M. Horn6, D. Q. Huang12, C. M. Ignarra17, M. Ihm6, R.G. Jacobsen6, W. Ji1, K. Kamdin6, K. Kazkaz7, D. Khaitan16, R. Knoche5, N.A. Larsen10, C. Lee1, B. G. Lenardo7, K. T. Lesko14, A. Lindote8, M.I. Lopes8, A. Manalaysay13, R. L. Mannino18, M. F. Marzioni, Daniel McKinsey6, D. M. Mei9, J. Mock19, M. Moongweluwan16, J. A. Morad13, A. St. J. Murphy20, C. Nehrkorn11, H. N. Nelson11, F. Neves8, K. O’Sullivan6, K. C. Oliver-Mallory6, K. J. Palladino17, E. K. Pease6, P. Phelps1, L. Reichhart15, C. Rhyne12, S. Shaw15, T. A. Shutt1, C. Silva8, M. Solmaz11, V. N. Solovov8, P. Sorensen14, S. Stephenson13, T. J. Sumner3, Matthew Szydagis19, D. J. Taylor, W. C. Taylor12, B. P. Tennyson10, P. A. Terman18, D. R. Tiedt4, W. H. To1, Mani Tripathi13, L. Tvrznikova6, S. Uvarov13, J.R. Verbus12, R. C. Webb18, J. T. White18, T. J. Whitis1, M. S. Witherell14, F.L.H. Wolfs16, Jilei Xu7, K. Yazdani3, Sarah Young19, Chao Zhang9 
TL;DR: This search yields no evidence of WIMP nuclear recoils and constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon experiment are reported.
Abstract: We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×10^{4} kg day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50 GeV c^{-2}, WIMP-nucleon spin-independent cross sections above 2.2×10^{-46} cm^{2} are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1×10^{-46} cm^{2} at 50 GeV c^{-2}.

1,844 citations

Journal ArticleDOI
D. S. Akerib1, Henrique Araujo2, X. Bai3, A. J. Bailey2, J. Balajthy4, P. Beltrame5, Ethan Bernard6, A. Bernstein7, T. P. Biesiadzinski1, E. M. Boulton6, A. W. Bradley1, R. Bramante1, Sidney Cahn6, M. C. Carmona-Benitez8, C. Chan9, J.J. Chapman9, A.A. Chiller10, C. Chiller10, A. Currie2, J. E. Cutter11, T. J. R. Davison5, L. de Viveiros12, A. Dobi13, J. E. Y. Dobson14, E. Druszkiewicz15, B. N. Edwards6, C. H. Faham13, S. Fiorucci13, R. J. Gaitskell9, V. M. Gehman13, C. Ghag14, K.R. Gibson1, M. G. D. Gilchriese13, C. R. Hall4, M. Hanhardt3, S. J. Haselschwardt8, S. A. Hertel6, D. P. Hogan16, M. Horn6, D. Q. Huang9, C. M. Ignarra17, M. Ihm13, R.G. Jacobsen13, W. Ji1, K. Kazkaz7, D. Khaitan15, R. Knoche4, N.A. Larsen6, C. Lee1, B. G. Lenardo7, K. T. Lesko13, A. Lindote12, M.I. Lopes12, D.C. Malling9, A. Manalaysay11, R. L. Mannino18, M. F. Marzioni5, Daniel McKinsey6, D. M. Mei10, J. Mock19, M. Moongweluwan15, J. A. Morad11, A. St. J. Murphy5, C. Nehrkorn8, H. N. Nelson8, F. Neves12, K. O'Sullivan6, K. C. Oliver-Mallory13, R. A. Ott11, K. J. Palladino17, M. Pangilinan9, E. K. Pease6, P. Phelps1, L. Reichhart14, C. Rhyne9, S. Shaw14, T. A. Shutt1, C. Silva12, V. N. Solovov12, P. Sorensen13, S. Stephenson11, T. J. Sumner2, Matthew Szydagis19, D. J. Taylor, W. C. Taylor9, B. P. Tennyson6, P. A. Terman18, D. R. Tiedt3, W. H. To1, Mani Tripathi11, L. Tvrznikova6, S. Uvarov11, J.R. Verbus9, R. C. Webb18, J. T. White18, T. J. Whitis1, M. S. Witherell8, F.L.H. Wolfs15, K. Yazdani2, Sarah Young19, Chao Zhang10 
TL;DR: This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV.
Abstract: We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including 1.4×10^{4} kg day of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4 GeV c^{-2}, these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33 GeV c^{-2} WIMP mass.

460 citations

Journal ArticleDOI
D. Acosta1, T. Affolder2, M. H. Ahn3, M. H. Ahn4  +636 moreInstitutions (56)
TL;DR: In this paper, the authors reported the observation of a state consistent with X(3872) decaying into J/ψπ+π-decomposition, where the observed width was consistent with the detector resolution and the results were found to be converging well with the measurements by the Belle Collaboration using b± decays.
Abstract: The observation of a state consistent with X(3872) decaying into J/ψπ+π- was reported. The X(3872) mass was measured to be 3871.3±0.7(stat)±0.4(syst)MeV/c2 from a sample of 730±90 candidates. The observed width was consistent with the detector resolution. The results were found to be converging well with the measurements by the Belle Collaboration using b± decays.

455 citations

Journal ArticleDOI
TL;DR: This work sets a lower limit on the half-life of the neutrinoless double-beta decay T(1/2)(0νββ)(136Xe)>1.6×10(25) yr (90% C.L.), corresponding to effective Majorana masses of less than 140-380 meV, depending on the matrix element calculation.
Abstract: Several properties of neutrinos, such as their absolute mass, their possible Majorana nature or the mechanisms that lead to small neutrino masses, are still unknown. The EXO-200 experiment is trying to answer some of these questions by searching for the hypothetical neutrinoless double beta decay of the isotope 136 Xe. This thesis describes an analysis of two years of detector data, which yields a lower limit on the half-life of neutrinoless double beta decay of 136 Xe of 1.1·10 25 years.

381 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: The current status of particle dark matter, including experimental evidence and theoretical motivations, including direct and indirect detection techniques, is discussed in this paper. But the authors focus on neutralinos in models of supersymmetry and Kaluza-Klein dark matter in universal extra dimensions.

4,614 citations

Journal ArticleDOI
TL;DR: In this paper, a new generation of parton distribution functions with increased precision and quantitative estimates of uncertainties is presented, using a recently developed eigenvector-basis approach to the hessian method, which provides the means to quickly estimate the uncertainties of a wide range of physical processes at these high-energy hadron colliders, based on current knowledge of the parton distributions.
Abstract: A new generation of parton distribution functions with increased precision and quantitative estimates of uncertainties is presented. This work signiflcantly extends previous CTEQ and other global analyses on two fronts: (i) a full treatment of available experimental correlated systematic errorsforbothnewandolddata sets; (ii) asystematic and pragmatic treatment of uncertainties of the parton distributions and their physical predictions, using a recently developed eigenvector-basis approach to the hessian method. The new gluon distribution is considerably harder than that of previous standard flts. A numberofphysicsissues,particularlyrelatingtothebehaviorofthegluondistribution,are addressedinmorequantitativetermsthanbefore. Extensiveresultsontheuncertaintiesof parton distributions at various scales, and on parton luminosity functions at the Tevatron RunII and the LHC, are presented. The latter provide the means to quickly estimate the uncertainties of a wide range of physical processes at these high-energy hadron colliders, basedoncurrentknowledgeofthepartondistributions. Inparticular, theuncertaintieson the production cross sections of the W, Z at the Tevatron and the LHC are estimated to be§4% and§5%, respectively, and that of a light Higgs at the LHC to be§5%.

4,427 citations

Journal ArticleDOI
TL;DR: FastJet as mentioned in this paper is a C++ package that provides a broad range of jet finding and analysis tools, including efficient native implementations of all widely used 2→1 sequential recombination jet algorithms for pp and e − − collisions.
Abstract: FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2→1 sequential recombination jet algorithms for pp and e + e − collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.

3,713 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented an updated leading-order, next-to-leading order and next-next-ordering order parton distribution function (MSTW 2008) determined from global analysis of hard-scattering data within the standard framework of leading-twist fixed-order collinear factorisation in the $\overline{\mathrm{MS}}$¯¯$¯¯¯¯¯
Abstract: We present updated leading-order, next-to-leading order and next-to-next-to-leading order parton distribution functions (“MSTW 2008”) determined from global analysis of hard-scattering data within the standard framework of leading-twist fixed-order collinear factorisation in the $\overline{\mathrm{MS}}$ scheme. These parton distributions supersede the previously available “MRST” sets and should be used for the first LHC data taking and for the associated theoretical calculations. New data sets fitted include CCFR/NuTeV dimuon cross sections, which constrain the strange-quark and -antiquark distributions, and Tevatron Run II data on inclusive jet production, the lepton charge asymmetry from W decays and the Z rapidity distribution. Uncertainties are propagated from the experimental errors on the fitted data points using a new dynamic procedure for each eigenvector of the covariance matrix. We discuss the major changes compared to previous MRST fits, briefly compare to parton distributions obtained by other fitting groups, and give predictions for the W and Z total cross sections at the Tevatron and LHC.

3,546 citations