scispace - formally typeset
Search or ask a question
Author

C. Rodriguez

Bio: C. Rodriguez is an academic researcher from Salk Institute for Biological Studies. The author has contributed to research in topics: Apical ectodermal ridge & Limb bud. The author has an hindex of 1, co-authored 1 publications receiving 118 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The dissociation between the expression of shh and Bmps suggests distinct roles for the encoded molecules in signalling and response in a–p patterning of limb buds in the chick mutant ta3 mutant.
Abstract: The chicken mutant talpid3 (ta3) has polydactylous limbs with up to 7-8 morphologically similar digits. This lack of antero-posterior polarity in digit pattern is correlated with symmetrical expression of genes of the HoxD complex. We determined the distribution of polarizing activity in limb buds of the chick mutant ta3 by assessing the ability of mesenchyme from various positions along the antero-posterior axis to induce digit duplications when grafted anteriorly into a normal limb. Cells with highest polarizing activity were found at the posterior margin of the wing as in the polarizing region of normal limb buds. However, in contrast to normal limb buds, ta3 anterior mesenchyme also had low polarizing activity. Application of retinoic acid or a polarizing region graft to the anterior of ta3 limb buds changed digit morphology but did not induce digit duplications or digits with any characteristic a-p pattern. To determine which genes are associated with polarizing activity and which are associated with patterning of the digits, we examined expression of the genes Sonic hedgehog (shh), Bmp-2, and Bmp-7, whose expression is normally confined to the posterior margin of the early wing bud and is associated with the polarizing region. In addition, we determined the distribution of Fgf-4 transcripts which in normal limb buds are restricted to the posterior part of the apical ectodermal ridge. In ta3 limb buds, shh expression is restricted to the posterior limb mesenchyme, which has high polarizing activity, but is not expressed in regions which have low polarizing activity. In contrast, Bmp-2 and Bmp-7 are expressed uniformly along the a-p axis. Fgf-4 transcripts are present throughout the apical ectodermal ridge in ta3 limb buds. In the ta3 mutant, there is both an abnormal distribution of signalling activity and response to polarizing signals. In addition, the dissociation between the expression of shh and Bmps suggests distinct roles for the encoded molecules in signalling and response in a-p patterning of limb buds.

118 citations


Cited by
More filters
Journal ArticleDOI
02 May 1997-Science
TL;DR: It is shown here that transgenic mice overexpressing SHH in the skin develop many features of basal cell nevus syndrome, demonstrating that SHH is sufficient to induce basal cell carcinomas in mice, suggesting thatSHH may have a role in human tumorigenesis.
Abstract: Mutations in the tumor suppressor gene PATCHED (PTC) are found in human patients with the basal cell nevus syndrome, a disease causing developmental defects and tumors, including basal cell carcinomas. Gene regulatory relationships defined in the fruit fly Drosophila suggest that overproduction of Sonic hedgehog (SHH), the ligand for PTC, will mimic loss of ptc function. It is shown here that transgenic mice overexpressing SHH in the skin develop many features of basal cell nevus syndrome, demonstrating that SHH is sufficient to induce basal cell carcinomas in mice. These data suggest that SHH may have a role in human tumorigenesis.

727 citations

Journal ArticleDOI
03 May 1996-Science
TL;DR: Results indicate BMP signaling actively mediates cell death in the embryonic limb and Expression of dnBMPR in chicken embryonic hind limbs greatly reduced interdigital apoptosis and resulted in webbed feet.
Abstract: Interdigital cell death leads to regression of soft tissue between embryonic digits in many vertebrates. Although the signals that regulate interdigital apoptosis are not known, BMPs—signaling molecules of the transforming growth factor-β superfamily—are expressed interdigitally. A dominant negative type I BMP receptor (dnBMPR-IB) was used here to block BMP signaling. Expression of dnBMPR in chicken embryonic hind limbs greatly reduced interdigital apoptosis and resulted in webbed feet. In addition, scales were transformed into feathers. The similarity of the webbing to webbed duck feet led to studies that indicate that BMPs are not expressed in the duck interdigit. These results indicate BMP signaling actively mediates cell death in the embryonic limb.

564 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the two type I BMPRs, BM PR-IA and BMPR-IB, regulate distinct processes during chick limb development and regulates apoptosis.
Abstract: The bone morphogenetic proteins (BMPs), TGFβ superfamily members, play diverse roles in embryogenesis, but how the BMPs exert their action is unclear and how different BMP receptors (BMPRs) contribute to this process is not known. Here we demonstrate that the two type I BMPRs, BMPR-IA and BMPR-IB, regulate distinct processes during chick limb development. BmpR-IB expression in the embryonic limb prefigures the future cartilage primordium, and its activity is necessary for the initial steps of chondrogenesis. During later chondrogenesis, BmpR-IA is specifically expressed in prehypertrophic chondrocytes. BMPR-IA regulates chondrocyte differentiation, serving as a downstream mediator of Indian Hedgehog (IHH) function in both a local signaling loop and a longer-range relay system to PTHrP. BMPR-IB also regulates apoptosis: Expression of activated BMPR-IB results in increased cell death, and we showed previously that dominant-negative BMPR-IB inhibits apoptosis. Our studies indicate that in TGFβ signaling systems, different type I receptor isoforms are dedicated to specific functions during embryogenesis.

517 citations

Journal ArticleDOI
TL;DR: The analysis of specific gene functions has revealed the existence of complex interactions between signaling pathways operated by secreted factors of the HH, TGF-beta/BMP, WNT, and FGF superfamilies, which interact with many other genetic networks to control limb positioning, outgrowth, and patterning.
Abstract: ■ Abstract Vertebrate limb buds are embryonic structures for which much molecular and cellular data are known regarding the mechanisms that control pattern formation during development. Specialized regions of the developing limb bud, such as the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the non-ridge ectoderm, direct and coordinate the development of the limb bud along the anteriorposterior (AP), dorsal-ventral (DV), and proximal-distal (PD) axes, giving rise to a stereotyped pattern of elements well conserved among tetrapods. In recent years, specific gene functions have been shown to mediate the organizing and patterning activities of the ZPA, the AER, and the non-ridge ectoderm. The analysis of these gene functions has revealed the existence of complex interactions between signaling pathways operated by secreted factors of the HH, TGF-fl/BMP, WNT, and FGF superfamilies, which interact with many other genetic networks to control limb positioning, outgrowth, and patterning. The study of limb development has helped to establish paradigms for the analysis of pattern formation in many other embryonic structures and organs.

400 citations

Journal ArticleDOI
TL;DR: The data show that levels of GDF-5 expression/activity are important in controlling the size of skeletal elements and provides a possible explanation for the variation in the severity of skeletal defects resulting from mutations in G DF-5.
Abstract: Mutations in GDF-5, a member of the TGF-beta superfamily, result in the autosomal recessive syndromes brachypod (bp) in mice and Hunter-Thompson and Grebe-type chondrodysplasias in humans. These syndromes are all characterised by the shortening of the appendicular skeleton and loss or abnormal development of some joints. To investigate how GDF-5 controls skeletogenesis, we overexpressed GDF-5 during chick limb development using the retrovirus, RCASBP. This resulted in up to a 37.5% increase in length of the skeletal elements, which was predominantly due to an increase in the number of chondrocytes. By injecting virus at different stages of development, we show that GDF-5 can increase both the size of the early cartilage condensation and the later developing skeletal element. Using in vitro micromass cultures as a model system to study the early steps of chondrogenesis, we show that GDF-5 increases chondrogenesis in a dose-dependent manner. We did not detect changes in proliferation. However, cell suspension cultures showed that GDF-5 might act at these stages by increasing cell adhesion, a critical determinant of early chondrogenesis. In contrast, pulse labelling experiments of GDF-5-infected limbs showed that at later stages of skeletal development GDF-5 can increase proliferation of chondrocytes. Thus, here we show two mechanisms of how GDF-5 may control different stages of skeletogenesis. Finally, our data show that levels of GDF-5 expression/activity are important in controlling the size of skeletal elements and provides a possible explanation for the variation in the severity of skeletal defects resulting from mutations in GDF-5.

365 citations