scispace - formally typeset
Search or ask a question
Author

C. Rodriguez-Solano

Bio: C. Rodriguez-Solano is an academic researcher from Technische Universität München. The author has contributed to research in topics: GNSS applications & Global Positioning System. The author has an hindex of 10, co-authored 26 publications receiving 505 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new model for the solar radiation pressure on GPS satellites is presented that is based on a box-wing satellite model, and assumes nominal attitude, which can be adjusted to fit the GPS tracking data.

123 citations

Journal ArticleDOI
TL;DR: In this article, the acceleration of a global GPS network with and without Earth radiation pressure has been investigated and two solutions covering 9 years (2000-2008) were computed and form the basis for this study.
Abstract: GPS satellite orbits available from the International GNSS Service (IGS) show a consistent radial bias of up to several cm and a particular pattern in the Satellite Laser Ranging (SLR) residuals, which are suggested to be related to radiation pressure mismodeling. In addition, orbit-related frequencies were identified in geodetic time series such as apparent geocenter motion and station displacements derived from GPS tracking data. A potential solution to these discrepancies is the inclusion of Earth radiation pressure (visible and infrared) modeling in the orbit determination process. This is currently not yet considered by all analysis centers contributing to the IGS final orbits. The acceleration, accounting for Earth radiation and satellite models, is introduced in this paper in the computation of a global GPS network (around 200 IGS sites) adopting the analysis strategies from the Center for Orbit Determination in Europe (CODE). Two solutions covering 9 years (2000–2008) with and without Earth radiation pressure were computed and form the basis for this study. In previous studies, it has been shown that Earth radiation pressure has a non-negligible effect on the GPS orbits, mainly in the radial component. In this paper, the effect on the along-track and cross-track components is studied in more detail. Also in this paper, it is shown that Earth radiation pressure leads to a change in the estimates of GPS ground station positions, which is systematic over large regions of the Earth. This observed “deformation” of the Earth is towards North–South and with large scale patterns that repeat six times per GPS draconitic year (350 days), reaching a magnitude of up to 1 mm. The impact of Earth radiation pressure on the geocenter and length of day estimates was also investigated, but the effect is found to be less significant as compared to the orbits and position estimates.

113 citations

Journal ArticleDOI
TL;DR: In this article, three GPS+GLONASS solutions of 8 years (2004-2011) were computed which differ only in the solar radiation pressure (SRP) and satellite attitude models, and they showed that part of the draconitic errors currently found in GNSS geodetic products are definitely induced by the CODE radiation pressure orbit modeling deficiencies.
Abstract: Systematic errors at harmonics of the GPS draconitic year have been found in diverse GPS-derived geodetic products like the geocenter $$Z$$ -component, station coordinates, $$Y$$ -pole rate and orbits (i.e. orbit overlaps). The GPS draconitic year is the repeat period of the GPS constellation w.r.t. the Sun which is about 351 days. Different error sources have been proposed which could generate these spurious signals at the draconitic harmonics. In this study, we focus on one of these error sources, namely the radiation pressure orbit modeling deficiencies. For this purpose, three GPS+GLONASS solutions of 8 years (2004–2011) were computed which differ only in the solar radiation pressure (SRP) and satellite attitude models. The models employed in the solutions are: (1) the CODE (5-parameter) radiation pressure model widely used within the International GNSS Service community, (2) the adjustable box-wing model for SRP impacting GPS (and GLONASS) satellites, and (3) the adjustable box-wing model upgraded to use non-nominal yaw attitude, specially for satellites in eclipse seasons. When comparing the first solution with the third one we achieved the following in the GNSS geodetic products. Orbits: the draconitic errors in the orbit overlaps are reduced for the GPS satellites in all the harmonics on average 46, 38 and 57 % for the radial, along-track and cross-track components, while for GLONASS satellites they are mainly reduced in the cross-track component by 39 %. Geocenter $$Z$$ -component: all the odd draconitic harmonics found when the CODE model is used show a very important reduction (almost disappearing with a 92 % average reduction) with the new radiation pressure models. Earth orientation parameters: the draconitic errors are reduced for the $$X$$ -pole rate and especially for the $$Y$$ -pole rate by 24 and 50 % respectively. Station coordinates: all the draconitic harmonics (except the 2nd harmonic in the North component) are reduced in the North, East and Height components, with average reductions of 41, 39 and 35 % respectively. This shows, that part of the draconitic errors currently found in GNSS geodetic products are definitely induced by the CODE radiation pressure orbit modeling deficiencies.

82 citations

Journal ArticleDOI
TL;DR: Estimates of differential code biases between QZSS and GPS observations are shown in the analysis of the orbit determination results for Michibiki, the first satellite of Japan’s Quasi-Zenith Satellite System.
Abstract: Results are presented for Michibiki, the first satellite of Japan's Quasi-Zenith Satellite System. Measurements for the analysis have been collected with five GNSS tracking stations in the service area of QZSS, which track five of the six signals transmitted by the satellite. The analysis discusses the carrier-to-noise density ratio as measured by the receiver for the different signals. Pseudorange noise and multipath are evaluated with dual-frequency and triple-frequency combinations. QZSS uses two separate antennas for signal transmission, which allows the determination of the yaw orientation of the spacecraft. Yaw angle estimation results for an attitude mode switch from yaw-steering to orbit-normal orientation are presented. Estimates of differential code biases between QZSS and GPS observations are shown in the analysis of the orbit determination results for Michibiki. The estimated orbits are compared with the broadcast ephemerides, and their accuracy is assessed with overlap comparisons.

59 citations

Journal ArticleDOI
TL;DR: In this paper, a combined reprocessing of GPS and GLONASS observations was performed to estimate combined GPS+GLONASS satellite clocks, with first results presented in this paper.
Abstract: The International GNSS Service (IGS) provides operational products for the GPS and GLONASS constellation. Homogeneously processed time series of parameters from the IGS are only available for GPS. Reprocessed GLONASS series are provided only by individual Analysis Centers (i. e. CODE and ESA), making it difficult to fully include the GLONASS system into a rigorous GNSS analysis. In view of the increasing number of active GLONASS satellites and a steadily growing number of GPS+GLONASS-tracking stations available over the past few years, Technische Universitat Dresden, Technische Universitat Munchen, Universitat Bern and Eidgenossische Technische Hochschule Zurich performed a combined reprocessing of GPS and GLONASS observations. Also, SLR observations to GPS and GLONASS are included in this reprocessing effort. Here, we show only SLR results from a GNSS orbit validation. In total, 18 years of data (1994–2011) have been processed from altogether 340 GNSS and 70 SLR stations. The use of GLONASS observations in addition to GPS has no impact on the estimated linear terrestrial reference frame parameters. However, daily station positions show an RMS reduction of 0.3 mm on average for the height component when additional GLONASS observations can be used for the time series determination. Analyzing satellite orbit overlaps, the rigorous combination of GPS and GLONASS neither improves nor degrades the GPS orbit precision. For GLONASS, however, the quality of the microwave-derived GLONASS orbits improves due to the combination. These findings are confirmed using independent SLR observations for a GNSS orbit validation. In comparison to previous studies, mean SLR biases for satellites GPS-35 and GPS-36 could be reduced in magnitude from $$-35$$ and $$-38$$ mm to $$-12$$ and $$-13$$ mm, respectively. Our results show that remaining SLR biases depend on the satellite type and the use of coated or uncoated retro-reflectors. For Earth rotation parameters, the increasing number of GLONASS satellites and tracking stations over the past few years leads to differences between GPS-only and GPS+GLONASS combined solutions which are most pronounced in the pole rate estimates with maximum 0.2 mas/day in magnitude. At the same time, the difference between GLONASS-only and combined solutions decreases. Derived GNSS orbits are used to estimate combined GPS+GLONASS satellite clocks, with first results presented in this paper. Phase observation residuals from a precise point positioning are at the level of 2 mm and particularly reveal poorly modeled yaw maneuver periods.

53 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The status and tracking capabilities of the IGS monitoring station network are presented and the multi-GNSS products derived from this resource are discussed and the achieved performance is assessed and related to the current level of space segment and user equipment characterization.

645 citations

Journal ArticleDOI
TL;DR: An initial characterization and performance assessment of the COMPASS/BeiDou-2 regional navigation system is presented and the benefit of triple-frequency measurements and extra-wide-lane ambiguity resolution is illustrated for relative positioning on a short baseline.
Abstract: An initial characterization and performance assessment of the COMPASS/BeiDou-2 regional navigation system is presented. Code and carrier phase measurements on up to three frequencies have been collected in March 2012 with a small regional network of monitoring stations. The signal and measurement quality are analyzed and compared with the Japanese Quasi Zenith Satellite System. A high level of stability is demonstrated for the inter-frequency carrier phase biases, which will facilitate the application of triple-frequency undifferenced ambiguity resolution techniques in future precise point positioning applications. The performance of the onboard Rubidium frequency standards is evaluated in comparison to ground-based hydrogen masers and shown to be well competitive with other GNSS satellite clocks. Precise orbit and clock solutions obtained in post-processing are used to study the presently achievable point positioning accuracy in COMPASS/BeiDou-2-only navigation. Finally, the benefit of triple-frequency measurements and extra-wide-lane ambiguity resolution is illustrated for relative positioning on a short baseline.

344 citations

Book ChapterDOI
01 Jan 2017
TL;DR: The International global navigation satellite system (GNSS) Service (IGS) is an organization devoted to the generation of high-precision GNSS data and products; a service that benefits science and society.
Abstract: The International global navigation satellite system (GNSS ) Service (IGS ) is an organization devoted to the generation of high-precision GNSS data and products; a service that benefits science and society. It is a voluntary federation of over 200 self-funding agencies, universities, and research institutions in more than 100 countries. Established in 1992 and formally launched on 1st January 1994, the IGS has delivered an uninterrupted time series of products that are utilized by a broad spectrum of users. IGS products have evolved over time, including the provision of GNSS data for constellations other than GPS , and the addition of real-time GNSS data and products.

299 citations

Journal ArticleDOI
TL;DR: In this article, the most successful instrumental methods that have been used to determine vertical displacements at the Earth's surface, so that the objectives of understanding and anticipating sea levels can be addressed adequately in terms of accuracy.
Abstract: Vertical land motions are a key element in understanding how sea levels have changed over the past century and how future sea levels may impact coastal areas. Ideally, to be useful in long-term sea level studies, vertical land motion should be determined with standard errors that are 1 order of magnitude lower than the contemporary climate signals of 1 to 3 mm/yr observed on average in sea level records, either using tide gauges or satellites. This metrological requirement constitutes a challenge in geodesy. Here we review the most successful instrumental methods that have been used to determine vertical displacements at the Earth’s surface, so that the objectives of understanding and anticipating sea levels can be addressed adequately in terms of accuracy. In this respect, the required level of uncertainty is examined in two case studies (global and local). A special focus is given to the use of the Global Positioning System (GPS) and to the combination of satellite radar altimetry with tide gauge data. We update previous data analyses and assess the quality of global satellite altimetry products available to the users for coastal applications. Despite recent advances, a near-plateau level of accuracy has been reached. The major limitation is the realization of the terrestrial reference frame, whose physical parameters, the origin and the scale factor, are beyond the scope of a unique technique such as the GPS. Additional practical but nonetheless important issues are associated with the installation of GPS antennas, such as ensuring that there is no unknown differential vertical motion with the tide gauge.

260 citations