scispace - formally typeset
Search or ask a question
Author

C. S. Ting

Bio: C. S. Ting is an academic researcher from Texas Center for Superconductivity. The author has contributed to research in topics: Superconductivity & Quasiparticle. The author has an hindex of 36, co-authored 372 publications receiving 5219 citations. Previous affiliations of C. S. Ting include University of California, Los Angeles & Brown University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a scanning tunnelling study of Fe(Te,Se) reveals a robust zero-energy bound state, providing evidence for a non-trivial pairing symmetry.
Abstract: The symmetry of Cooper pairs in iron-based superconductors is an issue under continued investigation. A scanning tunnelling study of Fe(Te,Se) reveals a robust zero-energy bound state, providing evidence for a non-trivial pairing symmetry.

208 citations

Journal ArticleDOI
TL;DR: The spin Hall effect in a two-dimensional electron system on honeycomb lattice with both intrinsic and Rashba spin-orbit couplings is studied numerically and it is shown that the charge transport through counterpropagating spin-polarized edge channels is well quantized, which is associated with a topological invariant of the system.
Abstract: The spin Hall effect in a two-dimensional electron system on honeycomb lattice with both intrinsic and Rashba spin-orbit couplings is studied numerically. Integer quantized spin Hall conductance is obtained at the zero Rashba coupling limit when electron Fermi energy lies in the energy gap created by the intrinsic spin-orbit coupling, in agreement with recent theoretical prediction. While nonzero Rashba coupling destroys electron spin conservation, the spin Hall conductance is found to remain near the quantized value, being insensitive to disorder scattering, until the energy gap collapses with increasing the Rashba coupling. We further show that the charge transport through counterpropagating spin-polarized edge channels is well quantized, which is associated with a topological invariant of the system.

148 citations

Journal ArticleDOI
TL;DR: In this paper, a non−Boltzmann theory of steadystate transport for two-dimensional systems in a strong electric field is developed, which includes a force and an energy balance equation.
Abstract: A non‐Boltzmann theory of steady‐state transport for two‐dimensional systems in a strong electric field is developed, which includes a force‐ and an energy‐balance equation. The electron temperature, impurity‐, and phonon‐limited mobilities are determined solely from these balance equations. The theory is applied to the calculation of ohmic and nonlinear transport in GaAs‐GaAlAs heterojunctions at low temperatures. Temperature‐dependent ohmic mobilities are calculated and compared with experiments. Nonlinear effects in electronic transport at low temperatures are discussed and some numerical results are presented. We also compare the present balance equations with those in the carrier temperature model.

114 citations

Journal ArticleDOI
TL;DR: In this article, the spin-polarized quasiparticle transport in ferromagnet-$d$-wave-superconductor junctions with the same interface was studied.
Abstract: Within a scattering framework, a theoretical study is presented for the spin-polarized quasiparticle transport in ferromagnet--$d$-wave-superconductor junctions with ${110}$ interface. We find that the subgap conductance behaviors are qualitatively different from a nonmagnetic case, due to the modification of Andreev reflection by the exchange field in the ferromagnet, and can also be significantly different from those of a ferromagnet--$s$-wave junction because of the sign change of the d-wave order parameter along the ${110}$ direction of the crystal. For a ballistic ferromagnet--$d$-wave-superconductor junction, a zero-bias conductance minimum is achieved. In addition, a conductance maximum at finite bias can also be evolved by interfacial scattering. For a normal-metal--ferromagnet--$d$-wave-superconductor junction, conductance resonances are predicted.

113 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: In this article, the quantum spin Hall (QSH) effect can be realized in mercury-cadmium telluride semiconductor quantum wells, a state of matter with topological properties distinct from those of conventional insulators.
Abstract: We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluride–cadmium telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the electronic state changes from a normal to an “inverted” type at a critical thickness d c . We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss methods for experimental detection of the QSH effect.

5,187 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the physics of high-temperature superconductors from the point of view of the doping of a Mott insulator is presented, with the goal of putting the resonating valence bond idea on a more formal footing.
Abstract: This article reviews the physics of high-temperature superconductors from the point of view of the doping of a Mott insulator. The basic electronic structure of cuprates is reviewed, emphasizing the physics of strong correlation and establishing the model of a doped Mott insulator as a starting point. A variety of experiments are discussed, focusing on the region of the phase diagram close to the Mott insulator (the underdoped region) where the behavior is most anomalous. The normal state in this region exhibits pseudogap phenomenon. In contrast, the quasiparticles in the superconducting state are well defined and behave according to theory. This review introduces Anderson's idea of the resonating valence bond and argues that it gives a qualitative account of the data. The importance of phase fluctuations is discussed, leading to a theory of the transition temperature, which is driven by phase fluctuations and the thermal excitation of quasiparticles. However, an argument is made that phase fluctuations can only explain pseudogap phenomenology over a limited temperature range, and some additional physics is needed to explain the onset of singlet formation at very high temperatures. A description of the numerical method of the projected wave function is presented, which turns out to be a very useful technique for implementing the strong correlation constraint and leads to a number of predictions which are in agreement with experiments. The remainder of the paper deals with an analytic treatment of the $t\text{\ensuremath{-}}J$ model, with the goal of putting the resonating valence bond idea on a more formal footing. The slave boson is introduced to enforce the constraint againt double occupation and it is shown that the implementation of this local constraint leads naturally to gauge theories. This review follows the historical order by first examining the U(1) formulation of the gauge theory. Some inadequacies of this formulation for underdoping are discussed, leading to the SU(2) formulation. Here follows a rather thorough discussion of the role of gauge theory in describing the spin-liquid phase of the undoped Mott insulator. The difference between the high-energy gauge group in the formulation of the problem versus the low-energy gauge group, which is an emergent phenomenon, is emphasized. Several possible routes to deconfinement based on different emergent gauge groups are discussed, which leads to the physics of fractionalization and spin-charge separation. Next the extension of the SU(2) formulation to nonzero doping is described with a focus on a part of the mean-field phase diagram called the staggered flux liquid phase. It will be shown that inclusion of the gauge fluctuation provides a reasonable description of the pseudogap phase. It is emphasized that $d$-wave superconductivity can be considered as evolving from a stable U(1) spin liquid. These ideas are applied to the high-${T}_{c}$ cuprates, and their implications for the vortex structure and the phase diagram are discussed. A possible test of the topological structure of the pseudogap phase is described.

3,246 citations

Journal ArticleDOI
TL;DR: In this paper, a broad review of fundamental electronic properties of two-dimensional graphene with the emphasis on density and temperature dependent carrier transport in doped or gated graphene structures is provided.
Abstract: We provide a broad review of fundamental electronic properties of two-dimensional graphene with the emphasis on density and temperature dependent carrier transport in doped or gated graphene structures. A salient feature of our review is a critical comparison between carrier transport in graphene and in two-dimensional semiconductor systems (e.g. heterostructures, quantum wells, inversion layers) so that the unique features of graphene electronic properties arising from its gap- less, massless, chiral Dirac spectrum are highlighted. Experiment and theory as well as quantum and semi-classical transport are discussed in a synergistic manner in order to provide a unified and comprehensive perspective. Although the emphasis of the review is on those aspects of graphene transport where reasonable consensus exists in the literature, open questions are discussed as well. Various physical mechanisms controlling transport are described in depth including long- range charged impurity scattering, screening, short-range defect scattering, phonon scattering, many-body effects, Klein tunneling, minimum conductivity at the Dirac point, electron-hole puddle formation, p-n junctions, localization, percolation, quantum-classical crossover, midgap states, quantum Hall effects, and other phenomena.

2,930 citations