scispace - formally typeset
Search or ask a question
Author

C.T. Liu

Bio: C.T. Liu is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Alloy & Amorphous metal. The author has an hindex of 93, co-authored 716 publications receiving 37841 citations. Previous affiliations of C.T. Liu include Auburn University & University of Hong Kong.


Papers
More filters
01 Jan 1985
TL;DR: In this article, the authors describe the behavior of grain boundaries in a two-dimensional model ordered alloy and the effects of elastic anisotropy on the anomalious yield behavior of cubic ordered alloys.
Abstract: This book contains over 50 selections. Some of the titles are: Order-disorder behavior of grain boundaries in a two-dimensional model ordered alloy; Dislocation reactions at grain boundaries in Ll/sub 2/ ordered alloys; Creep cavitation in a nickel aluminide; Effects of elastic anisotropy on the anomalious yield behavior of cubic ordered alloys; and Processing technology for nickel aluminides.

2,123 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship between phase stability and physicochemical/thermodynamic properties of alloying components in high entropy alloys was studied systematically and the mixing enthalpy was found to be the key factor controlling the formation of solid solutions or compounds.
Abstract: Phase stability is an important topic for high entropy alloys (HEAs), but the understanding to it is very limited. The capability to predict phase stability from fundamental properties of constituent elements would benefit the alloy design greatly. The relationship between phase stability and physicochemical/thermodynamic properties of alloying components in HEAs was studied systematically. The mixing enthalpy is found to be the key factor controlling the formation of solid solutions or compounds. The stability of fcc and bcc solid solutions is well delineated by the valance electron concentration (VEC). The revealing of the effect of the VEC on the phase stability is vitally important for alloy design and for controlling the mechanical behavior of HEAs.

1,559 citations

Journal ArticleDOI
Y.F. Ye1, Qing Wang1, Jian Lu1, C.T. Liu1, Yong Yang1 
TL;DR: In this paper, a critical review of the recent studies aiming to address the fundamental issues related to phase formation in high-entropy alloys is provided, and novel properties of HEAs are also discussed, such as their excellent specific strength, superior mechanical performance at high temperatures, exceptional ductility and fracture toughness at cryogenic temperatures, superparamagnetism and superconductivity.

1,494 citations

Journal ArticleDOI
TL;DR: In this paper, the atomic size difference, mixing enthalpy, mixing entropy, electronegativity, valence electron concentration among constituent elements in solid solutions forming high entropy alloys and amorphous alloys was analyzed.

1,376 citations

Journal ArticleDOI
TL;DR: In this article, a new indicator of glass-forming ability (GFA) for bulk metallic glasses (BMGs) is proposed based on crystallization processes during cooling and reheating of the supercooled liquid.

1,121 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: High entropy alloys (HEAs) are barely 12 years old as discussed by the authors, and the field has stimulated new ideas and inspired the exploration of the vast composition space offered by multi-principal element alloys.

4,693 citations

Journal ArticleDOI
TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.

4,394 citations