scispace - formally typeset
Search or ask a question
Author

C.-T. Tso

Bio: C.-T. Tso is an academic researcher from National Pingtung University. The author has contributed to research in topics: Superparamagnetism & Magnetic circular dichroism. The author has an hindex of 1, co-authored 1 publications receiving 12 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of Ag inclusions on magnetic properties and magnetic circular dichroism (MCD) of Fe3O4 nanoparticles (NPs) in the mixed system of Fe 3O4 and Ag NPs in dependence on the relative concentration of the components is presented.

19 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors applied magnetic nanoparticles (MNPs) and silver-loaded magnet nanoparticles(Ag-MNPs), respectively, in the advanced treatment and disinfection of the secondary effluent from a municipal WWTP.

38 citations

Journal ArticleDOI
TL;DR: A review of magnetically recoverable nanocatalysts and their applications in carbon-carbon and carbon-heteroatom bond formation can be found in this paper, where the authors give an insight into the important work done in the field of magnetic recoverable nano-catalysts.
Abstract: Nanocatalysis is an emerging area of research that has attracted much attention over the past few years. It provides the advantages of both homogeneous as well as heterogeneous catalysis in terms of activity, selectivity, efficiency and reusability. Magnetically recoverable nanocatalysts provide a larger surface area for the chemical transformations where the organic groups can be anchored and lead to decrease in the reaction time, increase in the reaction output and improve the atom economy of the chemical reactions. Moreover, magnetic nanocatalysts provide a greener approach towards the chemical transformations and are easily recoverable by the aid of an external magnet for their reusability. This review aims to give an insight into the important work done in the field of magnetically recoverable nanocatalysts and their applications in carbon–carbon and carbon–heteroatom bond formation.

21 citations

Journal ArticleDOI
TL;DR: In this article, the effect of modified nanomagnetite, Fe3O4 (nM), for biocatalytic support on properties associated with catalytic behavior and potential use in MSFBR is investigated.
Abstract: Magnetically stabilized fluidized bed reactor (MSFBR) is a sustainable and cost-effective biotechnological process, which justifies the increasing search for biocatalytic superparamagnetic supports to enzyme immobilization. This work, investigates the effect of modified nanomagnetite, Fe3O4 (nM), for biocatalytic support on properties associated with catalytic behavior and potential use in MSFBR. The nM was either synthesized and then modified with 3-aminopropyltriethoxysilano (nM-APTES) or stabilized with oleic acid (nM-OA) and later modified with chitosan (nM-OA-Cs). A novel correlation study was carried out about the support dimension effect, enzymatic surface loading and retained activity. Both nM-based supports were morphologically, structurally and magnetically characterized by X-ray diffraction, thermogravimetry, Mossbauer and Fourier-transform Infrared spectroscopies, as well as vibration sample magnetometry, scanning (SEM) and transmission (TEM) electron microscopies. The nM-APTES and nM-OA samples disclosed crystal sizes of 8.07 and 8.69 nm, respectively. From TEM imagens, the average particles sizes were 10.9 nm for nM-APTES and 12.6 nm for nM-OA. The nM-OA-Cs displayed an average particles size of 918.6 μm. These magnetic supports displayed high saturated magnetization, 79.6 emu/g for nM-APTES and 72.7 emu/g for nM-OA. The amano lipase AK enzyme was immobilized on supports activated with glutaraldehyde. The enzyme loading density of nM-APTES-GA-Lip (122 mg/g) with 61% immobilization yield was higher than that of nM-OA-Cs-GA-Lip (46 mg/g) with 23% immobilization yield. The catalytic activity of nM-APTES-GA-Lip (85%) was higher than that of nM-OA-Cs-GA-Lip (46%), which reflected the correlation between enzyme loading efficiency on the magnetic nanosupports and their relative activity, essential to potential use in MSFBR.

7 citations

Journal ArticleDOI
TL;DR: Core-shell FexOy@C nanoparticles modified with Ag were studied with X-ray diffraction, transmission electron microscopy, energy dispersive elemental mapping, Mössbauer spectroscopy, static magnetic measurements, and optical magnetic circular dichroism (MCD).
Abstract: Core-shell FexOy@C nanoparticles (NPs) modified with Ag were studied with x-ray diffraction, transmission electron microscopy, energy dispersive elemental mapping, Mossbauer spectroscopy, static magnetic measurements, and optical magnetic circular dichroism (MCD). FexOy@C NPs synthesized by the pyrolysis process of the mixture of Fe(NO3)3 · 9H2O with oleylamine and oleic acid were added to a heated mixture of oleylamine and AgNO3 in different concentrations. The final product was a mixture of iron oxide crystalline NPs in an amorphous carbon shell and Ag crystalline NPs. The iron oxide NPs were presented by two magnetic phases with extremely close crystal structures: Fe3O4 and γ-Fe2O3. Ag is shown to form crystalline NPs located very close to the iron oxide NPs. An assumption is made about the formation of hybrid FexOy@C-Ag NPs. Correlations were obtained between the Ag concentration in the fabricated samples, their magnetic properties and the MCD spectrum shape. Introducing Ag led to a approximately linear decrease of the NPs saturation magnetization depending upon the Ag concentration, it also resulted into the MCD spectrum shift to the lower light wave energies. MCD was also studied for the Fe3O4@C NPs synthesized earlier with the same one-step process using different heat treatment temperatures, and MCD spectra were compared for two series of NPs. A possible contribution of the surface plasmon excitation in Ag NPs to the MCD spectrum of the FexOy@C-Ag NPs is discussed.

7 citations