scispace - formally typeset
Search or ask a question
Author

C. Van den Broeck

Bio: C. Van den Broeck is an academic researcher from University of Hasselt. The author has contributed to research in topics: Fluctuation theorem & Brownian motion. The author has an hindex of 31, co-authored 79 publications receiving 6949 citations. Previous affiliations of C. Van den Broeck include Cardiff University & VU University Amsterdam.


Papers
More filters
Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1062 moreInstitutions (115)
TL;DR: The magnitude of modifications to the gravitational-wave dispersion relation is constrain, the graviton mass is bound to m_{g}≤7.7×10^{-23} eV/c^{2} and null tests of general relativity are performed, finding that GW170104 is consistent with general relativity.
Abstract: We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2^(8.4) _(−6.0)M_⊙ and 19.4^(5.3)_( −5.9)M_⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χ_(eff) = −0.12^(0.21)_( −0.30). This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880^(450)_(−390) Mpc corresponding to a redshift of z = 0.18^(0.08)_( −0.07) . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m_g ≤ 7.7 × 10^(−23) eV/c^2. In all cases, we find that GW170104 is consistent with general relativity.

2,569 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that for a heat engine, operating between reservoirs at temperatures at temperatures between T and T, the efficiency at maximum power is bounded from above by a constant factor of O(n/n) by linear irreversible thermodynamics.
Abstract: We show by general arguments from linear irreversible thermodynamics that for a heat engine, operating between reservoirs at temperatures ${T}_{0}$ and ${T}_{1}$, ${T}_{0}\ensuremath{\ge}{T}_{1}$, the efficiency at maximum power is bounded from above by $1\ensuremath{-}\sqrt{{T}_{1}/{T}_{0}}$.

413 citations

Journal ArticleDOI
TL;DR: It is shown that the average dissipation, upon perturbing a Hamiltonian system arbitrarily far out of equilibrium in a transition between two canonical equilibrium states, is exactly given by =W-DeltaF=kTD(rho||rho[ over ])=kT, where rho and rho[over ] are the phase-space density of the system measured at the same intermediate but otherwise arbitrary point in time, for the forward and backward process.
Abstract: We show, through a refinement of the work theorem, that the average dissipation, upon perturbing a Hamiltonian system arbitrarily far out of equilibrium in a transition between two canonical equilibrium states, is exactly given by $⟨{W}_{\mathrm{diss}}⟩=⟨W⟩\ensuremath{-}\ensuremath{\Delta}F=kTD(\ensuremath{\rho}\ensuremath{\parallel}\stackrel{\texttildelow{}}{\ensuremath{\rho}})=kT⟨\mathrm{ln} (\ensuremath{\rho}/\stackrel{\texttildelow{}}{\ensuremath{\rho}})⟩$, where $\ensuremath{\rho}$ and $\stackrel{\texttildelow{}}{\ensuremath{\rho}}$ are the phase-space density of the system measured at the same intermediate but otherwise arbitrary point in time, for the forward and backward process. $D(\ensuremath{\rho}\ensuremath{\parallel}\stackrel{\texttildelow{}}{\ensuremath{\rho}})$ is the relative entropy of $\ensuremath{\rho}$ versus $\stackrel{\texttildelow{}}{\ensuremath{\rho}}$. This result also implies general inequalities, which are significantly more accurate than the second law and include, as a special case, the celebrated Landauer principle on the dissipation involved in irreversible computations.

410 citations

Journal ArticleDOI
TL;DR: The effective diffusion coefficient for the overdamped Brownian motion in a tilted periodic potential is calculated in closed analytical form and Universality classes and scaling properties for weak thermal noise are identified near the threshold tilt where deterministic running solutions set in.
Abstract: The effective diffusion coefficient for the overdamped Brownian motion in a tilted periodic potential is calculated in closed analytical form. Universality classes and scaling properties for weak thermal noise are identified near the threshold tilt where deterministic running solutions set in. In this regime the diffusion may be greatly enhanced, as compared to free thermal diffusion with, for a realistic experimental setup, an enhancement of up to 14 orders of magnitude.

400 citations

Journal ArticleDOI
TL;DR: In this article, a simple model of a spatially distributed system subject to multiplicative noise, white in space and time, can undergo a nonequilibrium phase transition to a symmetry-breaking state, while no such transition exists in the absence of the noise term.
Abstract: We report on a simple model of a spatially distributed system which, subject to multiplicative noise, white in space and time, can undergo a nonequilibrium phase transition to a symmetry-breaking state, while no such transition exists in the absence of the noise term. The transition possesses features similar to those observed at second order equilibrium phase transitions: divergence of the correlation length and of the susceptibility, critical slowing down, and scaling properties. Furthermore, the transition is found to be reentrant: The ordered state appears at a critical value of the noise intensity but disappears again at a higher value of the noise strength.

345 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

7,327 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations

Journal ArticleDOI
TL;DR: Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging.
Abstract: The status of experimental tests of general relativity and of theoretical frameworks for analyzing them is reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the Eotvos experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves.

3,394 citations