scispace - formally typeset
Search or ask a question
Author

C. W. Sterner

Bio: C. W. Sterner is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Neutrino & Super-Kamiokande. The author has an hindex of 6, co-authored 6 publications receiving 1820 citations.

Papers
More filters
Journal ArticleDOI
Y. Ashie1, J. Hosaka1, K. Ishihara1, Yoshitaka Itow1, J. Kameda1, Yusuke Koshio1, A. Minamino1, C. Mitsuda1, M. Miura1, Shigetaka Moriyama1, Masayuki Nakahata1, Toshio Namba1, R. Nambu1, Y. Obayashi1, Masato Shiozawa1, Yoshihiro Suzuki1, Y. Takeuchi1, K. Taki1, Shinya Yamada1, M. Ishitsuka1, Takaaki Kajita1, K. Kaneyuki1, Shoei Nakayama1, A. Okada1, Ko Okumura1, C. Saji1, Y. Takenaga1, S. Clark2, Shantanu Desai2, E. Kearns2, S. Likhoded2, J. L. Stone2, L. R. Sulak2, W. Wang2, M. Goldhaber3, David William Casper4, J. P. Cravens4, W. Gajewski4, W. R. Kropp4, D. W. Liu4, S. Mine4, Michael B. Smy4, Henry W. Sobel4, C. W. Sterner4, Mark R. Vagins4, K. S. Ganezer5, John Hill5, W. E. Keig5, J. S. Jang6, J. Y. Kim6, I. T. Lim6, Kate Scholberg7, C. W. Walter7, R. W. Ellsworth8, S. Tasaka9, G. Guillian, A. Kibayashi, John G. Learned, S. Matsuno, D. Takemori, M. D. Messier10, Y. Hayato, A. K. Ichikawa, T. Ishida, T. Ishii, T. Iwashita, Takashi Kobayashi, T. Maruyama11, Koji Nakamura, K. Nitta, Yuichi Oyama, Makoto Sakuda12, Y. Totsuka, Atsumu Suzuki13, Masaya Hasegawa14, K. Hayashi14, I. Kato14, H. Maesaka14, Taichi Morita14, Tsuyoshi Nakaya14, K. Nishikawa14, T. Sasaki14, S. Ueda14, Shoji Yamamoto14, Todd Haines15, Todd Haines4, S. Dazeley16, S. Hatakeyama16, R. Svoboda16, E. Blaufuss17, J. A. Goodman17, G. W. Sullivan17, D. Turcan17, Alec Habig18, Y. Fukuda19, C. K. Jung20, T. Kato20, Katsuhiro Kobayashi20, Magdalena Malek20, C. Mauger20, C. McGrew20, A. Sarrat20, E. Sharkey20, C. Yanagisawa20, T. Toshito21, Kazumasa Miyano22, N. Tamura22, J. Ishii23, Y. Kuno23, Minoru Yoshida23, S. B. Kim24, J. Yoo24, H. Okazawa, T. Ishizuka25, Y. Choi26, H. Seo26, Y. Gando27, Takehisa Hasegawa27, Kunio Inoue27, J. Shirai27, A. Suzuki27, Masatoshi Koshiba1, Y. Nakajima28, Kyoshi Nishijima28, T. Harada29, Hirokazu Ishino29, Y. Watanabe29, D. Kielczewska4, D. Kielczewska30, J. Zalipska30, H. G. Berns31, R. Gran31, K. K. Shiraishi31, A. L. Stachyra31, K. Washburn31, R. J. Wilkes31 
TL;DR: In this article, a combined analysis of fully-contained, partially-contained and upward-going muon atmospheric neutrino data from a 1489 d exposure of the Super-Kamiokande detector is presented.
Abstract: We present a combined analysis of fully-contained, partially-contained and upward-going muon atmospheric neutrino data from a 1489 d exposure of the Super-Kamiokande detector. The data samples span roughly five decades in neutrino energy, from 100 MeV to 10 TeV. A detailed Monte Carlo comparison is described and presented. The data is fit to the Monte Carlo expectation, and is found to be consistent with neutrino oscillations of {nu}{sub {mu}}{r_reversible}{nu}{sub {tau}} with sin{sup 2}2{theta}>0.92 and 1.5x10{sup -3}<{delta}m{sup 2}<3.4x10{sup -3} eV{sup 2} at 90% confidence level.

701 citations

Journal ArticleDOI
Y. Ashie1, J. Hosaka1, K. Ishihara1, Yoshitaka Itow1, J. Kameda1, Yusuke Koshio1, A. Minamino1, C. Mitsuda1, M. Miura1, Shigetaka Moriyama1, Masayuki Nakahata1, Toshio Namba1, R. Nambu1, Y. Obayashi1, Masato Shiozawa1, Yasunari Suzuki1, Y. Takeuchi1, K. Taki1, Shinya Yamada1, Masaki Ishitsuka1, Takaaki Kajita1, K. Kaneyuki1, Shoei Nakayama1, A. Okada1, Ko Okumura1, T. Ooyabu1, C. Saji1, Y. Takenaga1, Shantanu Desai2, E. Kearns2, S. Likhoded2, J. L. Stone2, L. R. Sulak2, C. W. Walter2, W. Wang2, M. Goldhaber3, David William Casper4, J. P. Cravens4, W. Gajewski4, W. R. Kropp4, D. W. Liu4, S. Mine4, Michael B. Smy4, H. W. Sobel4, C. W. Sterner4, Mark R. Vagins4, K. S. Ganezer5, John Hill5, W. E. Keig5, J. S. Jang6, J. Y. Kim6, I. T. Lim6, R. W. Ellsworth7, S. Tasaka8, G. Guillian, A. Kibayashi, John G. Learned, S. Matsuno, D. Takemori, M. D. Messier9, Y. Hayato, A. K. Ichikawa, T. Ishida, T. Ishii, T. Iwashita, T. Kobayashi, Tomoyuki Maruyama, K. Nakamura, K. Nitta, Yuichi Oyama, Makoto Sakuda, Y. Totsuka, Atsumu Suzuki10, Masaya Hasegawa11, K. Hayashi11, T. Inagaki11, I. Kato11, H. Maesaka11, Taichi Morita11, Tsuyoshi Nakaya11, K. Nishikawa11, T. Sasaki11, S. Ueda11, Shoji Yamamoto11, Todd Haines4, Todd Haines12, S. Dazeley13, S. Hatakeyama13, R. Svoboda13, E. Blaufuss14, J. A. Goodman14, G. W. Sullivan14, D. Turcan14, Kate Scholberg15, Alec Habig16, Y. Fukuda17, C. K. Jung18, T. Kato18, Katsuhiro Kobayashi18, Magdalena Malek18, C. Mauger18, C. McGrew18, A. Sarrat18, E. Sharkey18, C. Yanagisawa18, T. Toshito19, Kazumasa Miyano20, N. Tamura20, J. Ishii21, Y. Kuno21, Y. Nagashima21, M. Takita21, Minoru Yoshida21, S. B. Kim22, J. Yoo22, H. Okazawa, T. Ishizuka23, Y. Choi24, H. Seo24, Y. Gando25, Takehisa Hasegawa25, Kunio Inoue25, J. Shirai25, A. Suzuki25, Masatoshi Koshiba1, Y. Nakajima26, Kyoshi Nishijima26, T. Harada27, Hirokazu Ishino27, R. Nishimura27, Y. Watanabe27, D. Kielczewska4, D. Kielczewska28, J. Zalipska28, H. G. Berns29, R. Gran29, K. K. Shiraishi29, A. L. Stachyra29, K. Washburn29, R. J. Wilkes29 
TL;DR: A dip in the L/E distribution was observed in the data, as predicted from the sinusoidal flavor transition probability of neutrino oscillation, which constrained nu(micro)<-->nu(tau) neutrinos oscillation parameters.
Abstract: Muon neutrino disappearance probability as a function of neutrino flight length $L$ over neutrino energy $E$ was studied. A dip in the $L/E$ distribution was observed in the data, as predicted from the sinusoidal flavor transition probability of neutrino oscillation. The observed $L/E$ distribution constrained ${\ensuremath{ u}}_{\ensuremath{\mu}}\ensuremath{\leftrightarrow}{\ensuremath{ u}}_{\ensuremath{\tau}}$ neutrino oscillation parameters; $1.9\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}l\ensuremath{\Delta}{m}^{2}l3.0\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}\text{ }\text{ }{\mathrm{e}\mathrm{V}}^{2}$ and ${sin }^{2}2\ensuremath{\theta}g0.90$ at 90% confidence level.

522 citations

Journal ArticleDOI
Shantanu Desai1, Y. Ashie2, S. Fukuda2, Y. Fukuda2, K. Ishihara2, Yoshitaka Itow2, Yusuke Koshio2, A. Minamino2, M. Miura2, Shigetaka Moriyama2, Masayuki Nakahata2, Toshio Namba2, R. Nambu2, Y. Obayashi2, Nobuyuki Sakurai2, Masato Shiozawa2, Yoshihiro Suzuki2, H. Takeuchi2, Y. Takeuchi2, Shinya Yamada2, M. Ishitsuka2, Takaaki Kajita2, K. Kaneyuki2, Shoei Nakayama2, A. Okada2, T. Ooyabu2, C. Saji2, M. Earl1, E. Kearns1, J. L. Stone1, Lawrence Sulak1, C. W. Walter1, W. Wang1, M. Goldhaber3, T. Barszczak4, David William Casper4, J. P. Cravens4, W. Gajewski4, W. R. Kropp4, S. Mine4, D. W. Liu4, Michael B. Smy4, H. W. Sobel4, C. W. Sterner4, Mark R. Vagins4, K. S. Ganezer5, John Hill5, W. E. Keig5, J. Y. Kim6, I. T. Lim6, R. W. Ellsworth7, S. Tasaka8, G. Guillian, A. Kibayashi, J. G. Learned, S. Matsuno, D. Takemori, M. D. Messier9, Y. Hayato, A. K. Ichikawa, T. Ishida, T. Ishii, T. Iwashita, J. Kameda, T. Kobayashi, Tomoyuki Maruyama, Kenzo Nakamura, K. Nitta, Yuichi Oyama, Makoto Sakuda, Y. Totsuka, Atsumu Suzuki10, Masaya Hasegawa11, K. Hayashi11, T. Inagaki11, I. Kato11, H. Maesaka11, Taichi Morita11, Tsuyoshi Nakaya11, K. Nishikawa11, T. Sasaki11, S. Ueda11, Shoji Yamamoto11, Todd Haines12, Todd Haines4, S. Dazeley13, S. Hatakeyama13, R. Svoboda13, E. Blaufuss14, J. A. Goodman14, G. W. Sullivan14, D. Turcan14, Kate Scholberg15, Alec Habig16, C. K. Jung17, T. Kato17, Katsuhiro Kobayashi17, Magdalena Malek17, C. Mauger17, C. McGrew17, A. Sarrat17, E. Sharkey17, C. Yanagisawa17, T. Toshito18, C. Mitsuda19, Kazumasa Miyano19, T. Shibata19, Y. Kajiyama20, Y. Nagashima20, M. Takita20, Minoru Yoshida20, Hyosun Kim21, S. B. Kim21, J. Yoo21, H. Okazawa, T. Ishizuka22, Y. Choi23, H. Seo23, Y. Gando24, Takehisa Hasegawa24, Kunio Inoue24, J. Shirai24, A. Suzuki24, Masatoshi Koshiba2, T. Hashimoto25, Y. Nakajima25, Kyoshi Nishijima25, T. Harada26, Hirokazu Ishino26, Mikio Morii26, R. Nishimura26, Y. Watanabe26, D. Kielczewska4, D. Kielczewska27, J. Zalipska27, R. Gran28, K. K. Shiraishi28, K. Washburn28, R. J. Wilkes28 
TL;DR: The results of indirect searches for Weakly Interacting Massive Particles (WIMPs) with 1679.6 live days of data from the Super-Kamiokande detector using neutrino-induced upward through-going muons are presented in this paper.
Abstract: We present the results of indirect searches for Weakly Interacting Massive Particles (WIMPs), with 1679.6 live days of data from the Super-Kamiokande detector using neutrino-induced upward through-going muons. The search is performed by looking for an excess of high energy muon neutrinos from WIMP annihilations in the Sun, the core of the Earth, and the Galactic Center, as compared to the number expected from the atmospheric neutrino background. No statistically significant excess was seen. We calculate the flux limits in various angular cones around each of the above celestial objects. We obtain conservative model-independent upper limits on the WIMP-nucleon cross section as a function of WIMP mass, and compare these results with the corresponding results from direct dark matter detection experiments.

323 citations

Journal ArticleDOI
J. Hosaka1, K. Ishihara1, J. Kameda1, Yusuke Koshio1, A. Minamino1, C. Mitsuda1, M. Miura1, Shigetaka Moriyama1, Masayuki Nakahata1, Toshio Namba1, Y. Obayashi1, Masato Shiozawa1, Yasunari Suzuki1, Atsushi Takeda1, Y. Takeuchi1, Shinya Yamada1, I. Higuchi1, M. Ishitsuka1, Takaaki Kajita1, K. Kaneyuki1, G. Mitsuka1, Shoei Nakayama1, H. Nishino1, A. Okada1, Ko Okumura1, C. Saji1, Y. Takenaga1, S. Clark2, Shantanu Desai3, Shantanu Desai2, E. Kearns2, S. Likhoded2, J. L. Stone2, L. R. Sulak2, W. Wang2, M. Goldhaber4, David William Casper5, J. P. Cravens5, W. R. Kropp5, D. W. Liu5, S. Mine5, C. Regis5, Michael B. Smy5, Henry W. Sobel5, C. W. Sterner5, Mark R. Vagins5, K. S. Ganezer6, J. Hill6, W. E. Keig6, J. S. Jang7, J. Y. Kim7, I. T. Lim7, Kate Scholberg8, C. W. Walter8, R. A. Wendell8, R. W. Ellsworth9, Shigeki Tasaka10, E. Guillian, A. Kibayashi, J. G. Learned, S. Matsuno, M. D. Messier11, Y. Hayato1, A. K. Ichikawa, T. Ishida, T. Ishii, T. Iwashita, T. Kobayashi, T. Nakadaira, K. Nakamura, K. Nitta, Yuichi Oyama, Y. Totsuka, Atsumu Suzuki12, Masaya Hasegawa13, I. Kato14, I. Kato13, H. Maesaka13, Tsuyoshi Nakaya13, K. Nishikawa13, Takanori Sasaki13, Hiroshi Sato13, Shoji Yamamoto13, Masashi Yokoyama13, T. J. Haines5, T. J. Haines15, S. Dazeley16, S. Hatakeyama16, R. Svoboda16, E. Blaufuss17, J. A. Goodman17, G. W. Sullivan17, D. Turcan17, Jodi Cooley18, Alec Habig19, Y. Fukuda20, T. Sato20, Yoshitaka Itow21, C. K. Jung22, T. Kato22, Katsuhiro Kobayashi22, M. Malek22, C. Mauger22, C. McGrew22, A. Sarrat1, A. Sarrat22, C. Yanagisawa22, N. Tamura23, Makoto Sakuda24, Yoshitaka Kuno25, Minoru Yoshida25, S. B. Kim26, J. Yoo26, T. Ishizuka27, H. Okazawa27, Y. Choi28, H. Seo28, Y. Gando29, Takehisa Hasegawa29, Kunio Inoue29, J. Shirai29, A. Suzuki29, Kyoshi Nishijima30, Hirokazu Ishino31, Y. Watanabe31, Masatoshi Koshiba1, D. Kielczewska32, D. Kielczewska5, J. Zalipska32, H. G. Berns33, R. Gran33, R. Gran19, K. K. Shiraishi33, A. L. Stachyra33, K. Washburn33, R. J. Wilkes33 
TL;DR: In this article, the results of a three-flavor oscillation analysis using Super-Kamiokande I atmospheric neutrino data, with the assumption of one mass scale dominance, were reported.
Abstract: We report on the results of a three-flavor oscillation analysis using Super-Kamiokande I atmospheric neutrino data, with the assumption of one mass scale dominance ($\ensuremath{\Delta}{m}_{12}^{2}=0$). No significant flux change due to matter effect, which occurs when neutrinos propagate inside the Earth for ${\ensuremath{\theta}}_{13}\ensuremath{ e}0$, has been seen either in a multi-GeV ${\ensuremath{ u}}_{e}$-rich sample or in a ${\ensuremath{ u}}_{\ensuremath{\mu}}$-rich sample. Both normal and inverted mass hierarchy hypotheses are tested and both are consistent with observation. Using Super-Kamiokande data only, 2-dimensional 90% confidence allowed regions are obtained: mixing angles are constrained to ${sin }^{2}{\ensuremath{\theta}}_{13}l0.14$ and $0.37l{sin }^{2}{\ensuremath{\theta}}_{23}l0.65$ for the normal mass hierarchy. Weaker constraints, ${sin }^{2}{\ensuremath{\theta}}_{13}l0.27$ and $0.37l{sin }^{2}{\ensuremath{\theta}}_{23}l0.69$, are obtained for the inverted mass hierarchy case.

155 citations

Journal ArticleDOI
D. W. Liu1, Y. Ashie2, S. Fukuda2, Y. Fukuda2, K. Ishihara2, Yoshitaka Itow2, Yusuke Koshio2, A. Minamino2, M. Miura2, Shigetaka Moriyama2, Masayuki Nakahata2, Toshio Namba2, R. Nambu2, Y. Obayashi2, Nobuyuki Sakurai2, Masato Shiozawa2, Yoshihiro Suzuki2, H. Takeuchi2, Y. Takeuchi2, Shinya Yamada2, M. Ishitsuka2, Takaaki Kajita2, K. Kaneyuki2, Shoei Nakayama2, A. Okada2, T. Ooyabu2, C. Saji2, Shantanu Desai3, M. Earl3, E. Kearns3, M. D. Messier4, M. D. Messier3, J. L. Stone3, L. R. Sulak3, C. W. Walter3, W. Wang3, T. Barszczak1, David William Casper1, J. P. Cravens1, W. Gajewski1, W. R. Kropp1, S. Mine1, Michael B. Smy1, H. W. Sobel1, C. W. Sterner1, Mark R. Vagins1, K. S. Ganezer5, J. Hill5, W. E. Keig5, J. Y. Kim6, I. T. Lim6, R. W. Ellsworth7, Shigeki Tasaka8, A. Kibayashi9, John G. Learned9, S. Matsuno9, D. Takemori9, Y. Hayato, A. K. Ichikawa, T. Ishida, T. Ishii, T. Iwashita, J. Kameda, T. Kobayashi, T. Maruyama10, Kenzo Nakamura, K. Nitta, Yuichi Oyama, Makoto Sakuda, Y. Totsuka, Atsumu Suzuki11, Masaya Hasegawa12, K. Hayashi12, T. Inagaki12, I. Kato12, H. Maesaka12, Taichi Morita12, Tsuyoshi Nakaya12, K. Nishikawa12, T. Sasaki12, S. Ueda12, Shoji Yamamoto12, T. J. Haines1, T. J. Haines13, S. Dazeley14, S. Hatakeyama14, R. Svoboda14, E. Blaufuss15, J. A. Goodman15, G. Guillian15, G. W. Sullivan15, D. Turcan15, Kate Scholberg16, Alec Habig17, M. Ackermann18, C. K. Jung18, T. Kato18, Katsuhiro Kobayashi18, K. Martens18, K. Martens19, Magdalena Malek18, C. Mauger18, C. McGrew18, E. Sharkey18, B. Viren18, B. Viren20, C. Yanagisawa18, T. Toshito21, C. Mitsuda22, Kazumasa Miyano22, T. Shibata22, J. Ishii23, Y. Kajiyama23, Yoshitaka Kuno23, Y. Nagashima23, M. Takita23, Minoru Yoshida23, Hyosun Kim24, S. B. Kim24, J. Yoo24, H. Okazawa, T. Ishizuka25, Y. Choi26, H. Seo26, Y. Gando27, Takehisa Hasegawa27, Kunio Inoue27, J. Shirai27, A. Suzuki27, Masatoshi Koshiba2, T. Hashimoto28, Y. Nakajima28, Kyoshi Nishijima28, Hirokazu Ishino29, Mikio Morii29, R. Nishimura29, Y. Watanabe29, D. Kielczewska30, D. Kielczewska1, J. Zalipska30, R. Gran31, K. K. Shiraishi31, K. Washburn31, R. J. Wilkes31 
TL;DR: In this article, the effect of neutrino oscillation on the shapes of energy spectra was considered and a limit of micro(nu) = 3.6x10(-10))micro(B) at 90% C.L. was obtained.
Abstract: A search for a nonzero neutrino magnetic moment has been conducted using 1496 live days of solar neutrino data from Super-Kamiokande-I. Specifically, we searched for distortions to the energy spectrum of recoil electrons arising from magnetic scattering due to a nonzero neutrino magnetic moment. In the absence of a clear signal, we found micro(nu)

84 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors employed a matrix-based power spectrum estimation method using pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 20 k-bands of both the clustering power and its anisotropy due to redshift-space distortions.
Abstract: We measure the large-scale real-space power spectrum P(k) using luminous red galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS) and use this measurement to sharpen constraints on cosmological parameters from the Wilkinson Microwave Anisotropy Probe (WMAP). We employ a matrix-based power spectrum estimation method using Pseudo-Karhunen-Loeve eigenmodes, producing uncorrelated minimum-variance measurements in 20 k-bands of both the clustering power and its anisotropy due to redshift-space distortions, with narrow and well-behaved window functions in the range 0.01h/Mpc 0.1h/Mpc and associated nonlinear complications, yet agree well with more aggressive published analyses where nonlinear modeling is crucial.

1,481 citations

Journal ArticleDOI
TL;DR: In this article, the authors combine the constraints from the recent Ly$\ensuremath{\alpha}$ forest analysis of the Sloan Digital Sky Survey (SDSS) and the SDSS galaxy bias analysis with previous constraints from sDSS galaxies clustering, the latest supernovae, and 1st year WMAP cosmic microwave background anisotropies, and find significant improvements on all of the cosmological parameters compared to previous constraints.
Abstract: We combine the constraints from the recent Ly$\ensuremath{\alpha}$ forest analysis of the Sloan Digital Sky Survey (SDSS) and the SDSS galaxy bias analysis with previous constraints from SDSS galaxy clustering, the latest supernovae, and 1st year WMAP cosmic microwave background anisotropies. We find significant improvements on all of the cosmological parameters compared to previous constraints, which highlights the importance of combining Ly$\ensuremath{\alpha}$ forest constraints with other probes. Combining WMAP and the Ly$\ensuremath{\alpha}$ forest we find for the primordial slope ${n}_{s}=0.98\ifmmode\pm\else\textpm\fi{}0.02$. We see no evidence of running, $dn/d\mathrm{ln} k=\ensuremath{-}0.003\ifmmode\pm\else\textpm\fi{}0.010$, a factor of $3$ improvement over previous constraints. We also find no evidence of tensors, $rl0.36$ ($95%$ c.l.). Inflationary models predict the absence of running and many among them satisfy these constraints, particularly negative curvature models such as those based on spontaneous symmetry breaking. A positive correlation between tensors and primordial slope disfavors chaotic inflation-type models with steep slopes: while the $V\ensuremath{\propto}{\ensuremath{\phi}}^{2}$ model is within the 2-sigma contour, $V\ensuremath{\propto}{\ensuremath{\phi}}^{4}$ is outside the 3-sigma contour. For the amplitude we find ${\ensuremath{\sigma}}_{8}=0.90\ifmmode\pm\else\textpm\fi{}0.03$ from the Ly$\ensuremath{\alpha}$ forest and WMAP alone. We find no evidence of neutrino mass: for the case of $3$ massive neutrino families with an inflationary prior, $\ensuremath{\sum}_{}^{}{m}_{\ensuremath{ u}}l0.42$ eV and the mass of lightest neutrino is ${m}_{1}l0.13$ eV at $95%$ c.l. For the 3 massless $+1$ massive neutrino case we find ${m}_{\ensuremath{ u}}l0.79$ eV for the massive neutrino, excluding at $95%$ c.l. all neutrino mass solutions compatible with the LSND results. We explore dark energy constraints in models with a fairly general time dependence of dark energy equation of state, finding ${\ensuremath{\Omega}}_{\ensuremath{\lambda}}=0.72\ifmmode\pm\else\textpm\fi{}0.02$, $\mathrm{w}(z=0.3)=\ensuremath{-}{0.98}_{\ensuremath{-}0.12}^{+0.10}$, the latter changing to $\mathrm{w}(z=0.3)=\ensuremath{-}{0.92}_{\ensuremath{-}0.10}^{+0.09}$ if tensors are allowed. We find no evidence for variation of the equation of state with redshift, $\mathrm{w}(z=1)=\ensuremath{-}{1.03}_{\ensuremath{-}0.28}^{+0.21}$. These results rely on the current understanding of the Ly$\ensuremath{\alpha}$ forest and other probes, which need to be explored further both observationally and theoretically, but extensive tests reveal no evidence of inconsistency among different data sets used here.

1,075 citations

Journal ArticleDOI
TL;DR: This review summarizes both the theoretical frameworks for tests of Lorentz invariance and experimental advances that have made new high precision tests possible.
Abstract: Motivated by ideas about quantum gravity, a tremendous amount of effort over the past decade has gone into testing Lorentz invariance in various regimes. This review summarizes both the theoretical frameworks for tests of Lorentz invariance and experimental advances that have made new high precision tests possible. The current constraints on Lorentz violating effects from both terrestrial experiments and astrophysical observations are presented.

1,008 citations

Journal ArticleDOI
TL;DR: The identity of dark matter is a question of central importance in both astrophysics and particle physics as discussed by the authors, and recent progress has greatly expanded the list of well-motivated candidates and the possible signatures of the dark matter.
Abstract: The identity of dark matter is a question of central importance in both astrophysics and particle physics. In the past, the leading particle candidates were cold and collisionless, and typically predicted missing energy signals at particle colliders. However, recent progress has greatly expanded the list of well-motivated candidates and the possible signatures of dark matter. This review begins with a brief summary of the standard model of particle physics and its outstanding problems. We then discuss several dark matter candidates motivated by these problems, including WIMPs, superWIMPs, light gravitinos, hidden dark matter, sterile neutrinos, and axions. For each of these, we critically examine the particle physics motivations and present their expected production mechanisms, basic properties, and implications for direct and indirect detection, particle colliders, and astrophysical observations. Upcoming experiments will discover or exclude many of these candidates, and progress may open up an era of unprecedented synergy between studies of the largest and smallest observable length scales.

976 citations

Journal ArticleDOI
TL;DR: The identity of dark matter is a question of central importance in both astrophysics and particle physics as mentioned in this paper, and recent progress has greatly expanded the list of well-motivated candidates.
Abstract: The identity of dark matter is a question of central importance in both astrophysics and particle physics. In the past, the leading particle candidates were cold and collisionless, and typically predicted missing energy signals at particle colliders. However, recent progress has greatly expanded the list of well-motivated candidates and the possible signatures of dark matter. This review begins with a brief summary of the standard model of particle physics and its outstanding problems. I then discuss several dark matter candidates motivated by these problems, including weakly interacting massive particles (WIMPs), superWIMPs, light gravitinos, hidden dark matter, sterile neutrinos, and axions. For each of these, I critically examine the particle physics motivations and present their expected production mechanisms, basic properties, and implications for direct and indirect detection, particle colliders, and astrophysical observations. Upcoming experiments will discover or exclude many of these candidates, and progress may open up an era of unprecedented synergy between studies of the largest and smallest observable length scales.

952 citations