scispace - formally typeset
Search or ask a question
Author

C. Wayne Smith

Bio: C. Wayne Smith is an academic researcher from Baylor College of Medicine. The author has contributed to research in topics: Inflammation & Integrin. The author has an hindex of 56, co-authored 174 publications receiving 13256 citations. Previous affiliations of C. Wayne Smith include University of Virginia & Agricultural Research Service.


Papers
More filters
Journal ArticleDOI
TL;DR: This review summarizes the current understanding of the cellular and molecular mechanisms regulating the inflammatory response following myocardial ischemia and reperfusion and concludes that by promoting more effective tissue repair, it may be possible to reduce the deleterious remodeling.
Abstract: One of the major therapeutic goals of modern cardiology is to design strategies aimed at minimizing myocardial necrosis and optimizing cardiac repair following myocardial infarction. However, a sound understanding of the biology is necessary before a specific intervention is pursued on a therapeutic basis. This review summarizes our current understanding of the cellular and molecular mechanisms regulating the inflammatory response following myocardial ischemia and reperfusion. Myocardial necrosis induces complement activation and free radical generation, triggering a cytokine cascade initiated by Tumor Necrosis Factor (TNF)-α release. If reperfusion of the infarcted area is initiated, it is attended by an intense inflammatory reaction. Interleukin (IL)-8 synthesis and C5a activation have a crucial role in recruiting neutrophils in the ischemic and reperfused myocardium. Neutrophil infiltration is regulated through a complex sequence of molecular steps involving the selectins and the integrins, which mediate leukocyte rolling and adhesion to the endothelium. Marginated neutrophils exert potent cytotoxic effects through the release of proteolytic enzymes and the adhesion with Intercellular Adhesion Molecule (ICAM)-1 expressing cardiomyocytes. Despite this potential injury, substantial evidence suggests that reperfusion enhances cardiac repair improving patient survival; this effect may be in part related to the inflammatory response. Monocyte Chemoattractant Protein (MCP)-1 is also markedly upregulated in the infarcted myocardium inducing recruitment of mononuclear cells in the injured areas. Monocyte-derived macrophages and mast cells may produce cytokines and growth factors necessary for fibroblast proliferation and neovascularization, leading to effective repair and scar formation. At this stage expression of inhibitory cytokines such as IL-10 may have a role in suppressing the acute inflammatory response and in regulating extracellular matrix metabolism. Fibroblasts in the healing scar undergo phenotypic changes expressing smooth muscle cell markers. Our previous review in this journal focused almost exclusively on reduction of the inflammatory injury. The current update is prompted by the potential therapeutic opportunity that the open vessel offers. By promoting more effective tissue repair, it may be possible to reduce the deleterious remodeling, that is the leading cause of heart failure and death. Elucidating the complex interactions and regulatory mechanisms responsible for cardiac repair may allow us to design effective inflammation-related interventions for the treatment of myocardial infarction.

1,966 citations

Journal ArticleDOI
28 Feb 1991-Nature
TL;DR: It is concluded that at sites of chronic inflammation, ELAM-1 may function as a skin vascular addressin, a tissue-selective endothelial cell-adhesion molecule for skin-homing memory T lymphocytes.
Abstract: Endothelial cell leukocyte adhesion molecule-1 (ELAM-1) has been described as an inducible endothelial cell-adhesion molecule for neutrophils, and is believed to have a key role in the extravasation of these cells at sites of acute inflammation. Here we report that ELAM-1-transfected COS cells also bind a unique skin-associated subset of circulating memory T cells defined by the expression of the cutaneous lymphocyte-associated antigen. T cells expressing this antigen bind at least as well as neutrophils to expressed ELAM-1, whereas other lymphocytes in the peripheral blood bind poorly, or not at all. Immunohistological survey of chronically inflamed tissue specimens revealed that vascular expression of ELAM-1 occurs at cutaneous sites in preference to noncutaneous sites. We conclude that at sites of chronic inflammation, ELAM-1 may function as a skin vascular addressin, a tissue-selective endothelial cell-adhesion molecule for skin-homing memory T lymphocytes.

835 citations

Journal ArticleDOI
TL;DR: Obesity is associated with increased accumulation of T cells and macrophages in AT, which may play important roles in obesity-related disease by influencing preadipocytes/adipocyte functions.
Abstract: Background— Obesity is associated with chronic inflammation, which includes increased macrophage accumulation in adipose tissue (AT) and upregulation of chemokines and cytokines. T cells also play important roles in chronic inflammatory diseases such as atherosclerosis but have not been well studied in obesity. Methods and Results— Flow cytometric analysis showed higher numbers of T cells and macrophages in AT of diet-induced obese insulin-resistant male mice than in lean mice and obese females (P<0.05). RNase protection assay, ELISA, and flow cytometry indicated gender-dependent upregulation of mRNA and protein levels of regulated on activation, normal T cell expressed and secreted (RANTES) and its receptor CCR5 in AT of obese mice. Adipocytes, stromal/vascular cells from mouse AT, and human and murine adipocytes expressed RANTES. RANTES mRNA levels were negatively correlated with adiponectin in mouse AT. Adiponectin-deficient mice fed high-fat diet showed higher RANTES mRNA levels in AT than wild-type m...

611 citations

Journal ArticleDOI
TL;DR: It is suggested that mast cell-derived TNF-alpha may be a crucial factor in upregulating IL-6 in infiltrating leukocytes and initiating the cytokine cascade responsible for myocyte ICAM-1 induction and subsequent neutrophil-induced injury.
Abstract: Background —Neutrophil-induced cardiomyocyte injury requires the expression of myocyte intercellular adhesion molecule (ICAM)-1 and ICAM-1–CD11b/CD18 adhesion. We have previously demonstrated interleukin (IL)-6 activity in postischemic cardiac lymph; IL-6 is the primary stimulus for myocyte ICAM-1 induction. Furthermore, we found that induction of IL-6 mRNA occurred very early on reperfusion of the infarcted myocardium. We hypothesized that the release of a preformed upstream cytokine induced IL-6 in leukocytes infiltrating on reperfusion. Methods and Results —Constitutive expression of TNF-α and not IL-1β was demonstrated in the normal canine myocardium and was localized predominantly in cardiac mast cells. Mast cell degranulation in the ischemic myocardium was documented by demonstration of a rapid release of histamine and TNF-α in the cardiac lymph after myocardial ischemia. Histochemical studies with FITC-labeled avidin demonstrated degranulating mast cells only in ischemic samples of canine myocardium. Immunohistochemistry suggested that degranulating mast cells were the primary source of TNF-α in the ischemic myocardium. In situ hybridization studies of reperfused myocardium localized IL-6 mRNA in infiltrating mononuclear cells and in mononuclear cells appearing in the postischemic cardiac lymph within the first 15 minutes of reperfusion. Furthermore, isolated canine mononuclear cells incubated with postischemic cardiac lymph demonstrated significant induction of IL-6 mRNA, which was partially blocked with a neutralizing antibody to TNF-α. Conclusions —Cardiac mast cells degranulate after myocardial ischemia, releasing preformed mediators, such as histamine and TNF-α. We suggest that mast cell–derived TNF-α may be a crucial factor in upregulating IL-6 in infiltrating leukocytes and initiating the cytokine cascade responsible for myocyte ICAM-1 induction and subsequent neutrophil-induced injury.

523 citations

Journal ArticleDOI
TL;DR: A severe defect in T cell proliferation was found in the CD18 null mice when T cell receptors were stimulated either by staphylococcal enterotoxin A or by major histocompatibility complex alloantigens demonstrating a greater role of CD11/CD18 integrins in Tcell responses than previously documented.
Abstract: A null mutation was prepared in the mouse for CD18, the β2 subunit of leukocyte integrins. Homozygous CD18 null mice develop chronic dermatitis with extensive facial and submandibular erosions. The phenotype includes elevated neutrophil counts, increased immunoglobulin levels, lymphadenopathy, splenomegaly, and abundant plasma cells in skin, lymph nodes, gut, and kidney. Very few neutrophils were found in spontaneously occurring skin lesions or with an induced toxic dermatitis. Intravital microscopy in CD18 null mice revealed a lack of firm neutrophil attachment to venules in the cremaster muscle in response to N -formyl- methionyl-leucyl-phenylalanine. A severe defect in T cell proliferation was found in the CD18 null mice when T cell receptors were stimulated either by staphylococcal enterotoxin A or by major histocompatibility complex alloantigens demonstrating a greater role of CD11/CD18 integrins in T cell responses than previously documented. The null mice are useful for delineating the functions of CD18 in vivo.

379 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations

Journal Article
TL;DR: Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional, and suggestions are made where such possibilities may be worth pursuing.
Abstract: Flavonoids are nearly ubiquitous in plants and are recognized as the pigments responsible for the colors of leaves, especially in autumn. They are rich in seeds, citrus fruits, olive oil, tea, and red wine. They are low molecular weight compounds composed of a three-ring structure with various substitutions. This basic structure is shared by tocopherols (vitamin E). Flavonoids can be subdivided according to the presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3, or a hydroxyl group in position 3 of the C (middle) ring. These characteristics appear to also be required for best activity, especially antioxidant and antiproliferative, in the systems studied. The particular hydroxylation pattern of the B ring of the flavonoles increases their activities, especially in inhibition of mast cell secretion. Certain plants and spices containing flavonoids have been used for thousands of years in traditional Eastern medicine. In spite of the voluminous literature available, however, Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional. Suggestions are made where such possibilities may be worth pursuing.

4,663 citations

Journal ArticleDOI
TL;DR: This Review focuses on new aspects of one of the central paradigms of inflammation and immunity — the leukocyte adhesion cascade.
Abstract: To get to the site of inflammation, leukocytes must first adhere to and traverse the blood-vessel wall, events that occur in a cascade-like manner. But what are the exact steps in this cascade and what molecules are involved?

3,917 citations

Journal ArticleDOI
19 Sep 2003-Cell
TL;DR: The existence of Lin(-) c-kit(POS) cells with the properties of cardiac stem cells, which are self-renewing, clonogenic, and multipotent, giving rise to myocytes, smooth muscle, and endothelial cells are reported.

3,651 citations