scispace - formally typeset
Search or ask a question
Author

Cailing Lin

Bio: Cailing Lin is an academic researcher from South China University of Technology. The author has contributed to research in topics: Trans-activating crRNA & Mutant. The author has co-authored 2 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a Cas12a-based RT-PCR combined with CRISPR on-site rapid detection system (RT-CORDS) platform was used to detect the key mutations in SARS-CoV-2 variants, such as 69/70 deletion, N501Y, and D614G.

21 citations

Posted Content
TL;DR: In this article, a Cas12a-based RT-PCR combined with CRISPR on-site rapid detection system (RT-CORDS) platform was used to detect the key mutations in SARS-CoV-2 variants, such as 69/70 deletion, N501Y, and D614G.
Abstract: The increasing prevalence of SARS-CoV-2 variants with spike mutations has raised concerns owing to higher transmission rates, disease severity, and escape from neutralizing antibodies. Rapid and accurate detection of SARS-CoV-2 variants provides crucial information concerning the outbreaks of SARS-CoV-2 variants and possible lines of transmission. This information is vital for infection prevention and control. We used a Cas12a-based RT-PCR combined with CRISPR on-site rapid detection system (RT-CORDS) platform to detect the key mutations in SARS-COV-2 variants, such as 69/70 deletion, N501Y, and D614G. We used type-specific CRISPR RNAs (crRNAs) to identify wild-type (crRNA-W) and mutant (crRNA-M) sequences of SARS-CoV-2. We successfully differentiated mutant variants from wild-type SARS-CoV-2 with a sensitivity of $10^{-17}$ M (approximately 6 copies/$\mu$L). The assay took just 10 min with the Cas12a/crRNA reaction after a simple RT-PCR using a fluorescence reporting system. In addition, a sensitivity of $10^{-16}$ M could be achieved when lateral flow strips were used as readouts. The accuracy of RT-CORDS for SARS-CoV-2 variant detection was 100% consistent with the sequencing data. In conclusion, using the RT-CORDS platform, we accurately, sensitively, specifically, and rapidly detected SARS-CoV-2 variants. This method may be used in clinical diagnosis.

Cited by
More filters
Journal ArticleDOI
TL;DR: Bacterial infections can be eliminated with high efficiency due to excellent photothermal property of CuSeNPs@MPBA, and the developed multifunctional platform has advantages of simple operation with low cost, suggesting its high potential for use in food safety, environment monitoring, and clinical applications.
Abstract: Bacterial infections seriously threaten human health and also bring huge financial burden. It is critical to construct multifunctional platforms for effectively inactivating bacteria right after point-of-care testing (POCT). Chemiluminescence (CL) bioassays are considered as powerful candidates for POCT as they are free from using an excitation light source, while the flash-type emission limits their further application. Herein, a CL system with long, persistent, and intensive intensity was constructed based on the peroxidase-like property of 4-mercaptophenylboronic acid (MPBA)-functionalized CuSe nanoprobes (CuSeNPs@MPBA), which improved the detection accuracy and sensitivity. By further integrating a smartphone as an analyzer, quantitative POCT of bacteria was realized with high sensitivity. The limit of detection was as low as 1.25 and 1.01 cfu mL-1 for Staphylococcus aureus and Escherichia coli detection, respectively. Specifically, bacteria can be eliminated with high efficiency due to excellent photothermal property of CuSeNPs@MPBA. The developed multifunctional platform also has advantages of simple operation with low cost, suggesting its high potential for use in food safety, environment monitoring, and clinical applications.

16 citations

Journal ArticleDOI
TL;DR: REVEALR is designed into a novel genotyping assay that detects single-base mismatches corresponding to each of the major SARS-CoV-2 strains found in the United States, and offers an important new approach to personalized diagnostics.
Abstract: The SARS-CoV-2 virus has evolved into new strains that increase viral transmissibility and reduce vaccine protection. The rapid circulation of these more harmful strains across the globe has created a pressing need for alternative public health screening tools. REVEALR (RNA-encoded viral nucleic acid analytic reporter), a rapid and highly sensitive DNAzyme-based detection system, functions with perfect accuracy against patient-derived clinical samples. Here, we design REVEALR into a novel genotyping assay that detects single-base mismatches corresponding to each of the major SARS-CoV-2 strains found in the United States. Of 34 sequence-verified patient samples collected in early, mid, and late 2021 at the UCI Medical Center in Orange, California, REVEALR identified the correct variant [Wuhan-Hu-1, alpha (B.1.1.7), gamma (P.1), epsilon (B.1.427/9), delta (B.1.617.2), and omicron (B.1.1.529)] with 100% accuracy. The assay, which is programmable and amenable to multiplexing, offers an important new approach to personalized diagnostics.

9 citations

Journal ArticleDOI
22 Oct 2022-Viruses
TL;DR: A range of research has been reported on detection techniques for VOCs, which is beneficial to prevent the rapid spread of the epidemic, improve the effectiveness of public health and social measures, and reduce the harm to human health and safety as discussed by the authors .
Abstract: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for the global epidemic of Coronavirus Disease 2019 (COVID-19), with a significant impact on the global economy and human safety. Reverse transcription-quantitative polymerase chain reaction (RT-PCR) is the gold standard for detecting SARS-CoV-2, but because the virus’s genome is prone to mutations, the effectiveness of vaccines and the sensitivity of detection methods are declining. Variants of concern (VOCs) include Alpha, Beta, Gamma, Delta, and Omicron, which are able to evade recognition by host immune mechanisms leading to increased transmissibility, morbidity, and mortality of COVID-19. A range of research has been reported on detection techniques for VOCs, which is beneficial to prevent the rapid spread of the epidemic, improve the effectiveness of public health and social measures, and reduce the harm to human health and safety. However, a meaningful translation of this that reduces the burden of disease, and delivers a clear and cohesive message to guide daily clinical practice, remains preliminary. Herein, we summarize the capabilities of various nucleic acid and protein-based detection methods developed for VOCs in identifying and differentiating current VOCs and compare the advantages and disadvantages of each method, providing a basis for the rapid detection of VOCs strains and their future variants and the adoption of corresponding preventive and control measures.

5 citations

Journal ArticleDOI
TL;DR: A comprehensive and up-to-date overview of multiplex assays that incorporate various detection reactions and readout modalities can be found in this paper , followed by highlights of platforms that are amenable for point-of-care use.

4 citations

Posted ContentDOI
18 Mar 2022-medRxiv
TL;DR: A robust multiplexed CRISPR-based detection using LwaCas13a and PsmCas13b to simultaneously diagnose SARS-CoV-2 infection and pinpoint the causative Sars-Cov-2 variant of concern (VOC)-including globally dominant VOCs Delta, Omicron, and B.1.617.
Abstract: Point-of-care (POC) nucleic acid detection technologies are poised to aid gold-standard technologies in controlling the COVID-19 pandemic, yet shortcomings in the capability to perform critically needed complex detection, such as multiplexed detection for viral variant surveillance, may limit their widespread adoption. Herein, we developed a robust multiplexed CRISPR-based detection using LwaCas13a and PsmCas13b to simultaneously diagnose SARS-CoV-2 infection and pinpoint the causative SARS-CoV-2 variant of concern (VOC)-including globally dominant VOCs Delta (B.1.617.2) and Omicron (B.1.1.529)-all while maintaining high levels of accuracy upon the detection of multiple SARS-CoV-2 gene targets. The platform has several attributes suitable for POC use: premixed, freeze-dried reagents for easy use and storage; convenient direct-to-eye or smartphone-based readouts; and a one-pot variant of the multiplexed detection. To reduce reliance on proprietary reagents and enable sustainable use of such a technology in low- and middle-income countries, we locally produced and formulated our own recombinase polymerase amplification reaction and demonstrated its equivalent efficiency to commercial counterparts. Our tool, CRISPR-based detection for simultaneous COVID-19 diagnosis and variant surveillance which can be locally manufactured, may enable sustainable use of CRISPR diagnostics technologies for COVID-19 and other diseases in POC settings.

4 citations